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characteristics. A series of numerical experiments with varying FGM copula equation.

parameters demonstrate that the ruin probability decreases as the initial surplus
increases and is significantly influenced by the strength of the dependence
structure. From a practical perspective, distinguishing between claim types allows
insurers to identify which category poses the greatest threat to solvency, thereby
supporting more targeted underwriting and accurate capital allocation strategies.

1. INTRODUCTION

Foundational to ruin theory is the classical Cramér-Lundberg risk model in continuous time, introduced by
Filip Lundberg in 1903 and further developed by Harald Cramér in the 1930s [1]. The model assumes that
insurance claims arrive randomly according to a Poisson process {N(t),t = 0} with intensity A, while claim
sizes X; are independent and identically distributed and independent of the interarrival times T;. Premium
income accrues continuously at rate c(t), which is often taken to be constant with ¢ > 0. A central implication
is that the probability of ruin decreases exponentially with increasing initial surplus u. The insurer’s surplus at
time t is modeled as U(t) = u + ct — S(t), where the aggregate claims process is S(t) = Z?]:(i) X [2]
Despite its relative simplicity, the model has significantly influenced actuarial theory and insurance practice.
It is widely used for computing ruin probabilities and quantifying bankruptcy risk. Consequently, this utility
has motivated continued research and extensions of the framework. Consistent with this framework, Maulida
et al. [3] adopts the Cramér-Lundberg risk model with claim sizes follow a mixtures of two exponential
distributions and solves the corresponding integro-differential system numerically to assess solvency risk. The
findings show that the probability of ruin decreases exponentially as the initial surplus increases, preserving
the classical exponential-decay behavior even under mixture-exponential claim sizes.

Since their inception, insurance companies have undergone substantial development. A key evolution is the
diversification of product offerings, which has resulted in distinct claim categories across various lines of
business. In health insurance, small claims such as routine treatment, prescription drugs, and general
practitioner visits occur frequently but at lower cost, whereas large claims such as major surgery or prolonged
serious care are rare yet financially substantial. Jiang and Ma [4], Shija and Jacob [5] investigated ruin

probabilities for two-claim-type models under varied surplus processes. In this framework, the aggregate
claims at timet are expressed as S(t) = Z?]:lit) X + Z?]j(lt) Y;. As in the Cramér—Lundberg assumption,
several works assume independence between claim sizes and interarrival times, although this assumption often
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fails to reflect practical realities in operational data. Empirically, Shi et al. [6] documented a positive, albeit
weak, dependence between claim frequency and severity in motor insurance. Frees et al. [7] reported a similar
weak association for claim frequency and severity in property insurance.

A standard approach to capture dependence between two random variables is to use a copula, which links
their marginal distributions to a joint distribution. In the context of estimating ruin probabilities, the Farlie-
Gumbel-Morgenstern (FGM) copula is frequently used to model the dependence between claim sizes and inter-
claim times. Various studies have embedded this dependence structure into different risk frameworks. For
instance, Cossette et al. [8] applied the FGM copula to the classical Cramér-Lundberg model, while Cossette
et al. [9] incorporated it into a risk model with dividend strategies. Furthermore, Chadjiconstantinidis and
Vrontos [10] analyzed an Erlang(n) risk model, Ragulina [11] investigates a stochastic premium risk model,
and Adékambi and Takouda [12] examined a perturbed risk model. Although these works successfully derived
explicit formulas for ruin probability under exponentially distributed claim sizes, their frameworks remained
confined to a single claim type.

In this research, we investigate ruin probabilities within a Cramér-Lundberg risk model that incorporates
two types of claims. A critical distinction in our framework lies in the dependence structure: while the
occurrences of type-I and type-II claims are assumed to be mutually independent processes, we explicitly
model the dependence within each claim type, specifically between inter-claim times and claim sizes using the
FGM copula. This approach allows us to capture the time-size correlation inherent in each line of business
while retaining tractable marginal distributions. We define two claim types by categorizing insurance claims
into two groups that exhibit distinct risk characteristics. These distinctions may arise from differences in
frequency, claim severity, source of occurrence, or operational handling processes. This separation is intended
to render the risk model more realistic and accurate. The primary objective of this study is to derive an explicit
analytical expression for the ruin probability within a risk model characterizing two types of claims and FGM
copula dependence. To achieve this, we first establish the model assumptions, identify the positive roots of the
generalized Lundberg’s equation, and formulate the corresponding integro-differential equation.
Subsequently, we obtain the Laplace transform and apply these results to the case of exponentially distributed
claim sizes. Finally, numerical illustrations are provided to demonstrate the impact of dependence structures
on solvency risk.

2. METHODS

The approach implemented in this study involved a comprehensive literature review, gathering pertinent
information from diverse sources including books and academic journals related to the subject matter.
Additionally, numerical simulations were performed using Python. The methodology employed in this study
follows a systematic four-step framework. First, we construct the risk model by defining two independent
Poisson processes for claim arrivals and employing the FGM copula to model the dependence between claim
sizes and inter-claim times. Second, we derive the Lundberg’s equation and utilize a modification of Rouche’s
theorem to determine the existence of its roots in the complex plane. Third, we formulate the integro-
differential equation for the ruin probability and apply the Laplace transform to obtain its solution in the
transform domain, the Lagrange interpolation formula is then used to facilitate the inverse transformation,
yielding an explicit analytical expression. Finally, numerical evaluations are implemented using Python to
compute the ruin probabilities based on the derived explicit formulas. These numerical experiments are
designed to simulate various dependence scenarios (independent, positive, negative, and hybrid) and analyze
the sensitivity of solvency risk to changes in copula parameters and initial surplus levels.

2.1 Poisson Process and Compound Poisson Process

A stochastic process {N(t), t = 0} is termed a counting process when N (t) represents the number of events
up to time t and satisfies the properties N(t) = 0, N(t) € Z, and for s < t one has N(s) < N(t), with the
increment N (t) — N(s) giving the number of events occurring on (s, t]. Within this framework, the process is
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said to possess independent increments if for any sequence 0 <t,<t; <--<t,the random
variables N(t;) — N(tp), ..., N(t,) — N(t,,—1) are mutually independent, equivalently, counts over pairwise
disjoint time intervals are independent.

Definition 1 [13]. 4 Poisson process with intensity A is a counting process {N(t),t = 0} such that N(0) = 0
and the paths are nondecreasing with N(s) < N(t) for all s < t, the small-interval transition probabilities
satisfy P(N(t+ h) =n+ 1| N(t) =n) = Ah+ o(h), P(N(t + h) =n+m|N(t) =n) = o(h) for m >
1, and P(N(t + h) = n | N(t) = n) = 1 — Ah + o(h), and the process has independent increments, meaning
that counts over disjoint time intervals are independent.

If the sequence of interarrival times {T,,,n = 1,2, ... } corresponds to a Poisson counting process, then {T;,}
consists of independent identically distributed (i.i.d.) exponential random variables with rate A. In line with
this, if {N;(t),t = 0} and {N,(t),t = 0} are independent Poisson processes with rates 4; and 4,, then N(t) =
Ny (t) + N,(t) is Poisson process with rate 4, + 1.

Definition 2 [13]. 4 stochastic process {S(t),t = 0} is called a compound Poisson process if it can be written
as S(t) = le\]:(? X; fort = 0, where {N(t)} is a Poisson process and {X;};»1 are i.i.d. random variables that
are independent of {N (t)}.

In this study, this stochastic framework serves as the fundamental for modeling the arrival frequency and
aggregate magnitude of both claim types within the surplus process.

2.2 Lundberg’s Generalized Equation of Cramér-Lundberg Risk Model

In the Cramér-Lundberg risk model, the surplus process is modeled by
N(t)

Ult) =u+c(t) — ZX"' (1)
i=1

where u is the initial capital and N(t) counts claims up to time t while the aggregate claims are S(t) =
ZN(t)

i=1
and follows a homogeneous Poisson process of rate A, and the claim sizes {X;} are i.i.d. with finite mean and
independent of {N(t)}, yielding a compound Poisson structure for S(t) and the standard continuous-time
surplus dynamics used in ruin analysis. The interarrival times Ty, T, ... are defined by Ty = 0 and Ty, = t; —
ty_q1 for k > 0, where t;, denotes the jump time of the k-th claim, and these interarrival variables are i.i.d.
exponential random variables with rate A. It follows that the n-th arrival jump time satisfies t, = Xiv T;.

X; . The premium inflow is deterministic with c(t) = ct, for c > 0. The claim count starts at N(0) = 0

Cossette et al. [8] derived Lundberg’s generalized equation of Cramér-Lundberg risk model for force of
interest § = 0 is given by

E[er(CT—X)] =1, )

the adjustment coefficient is denoted —R with R > 0 and is defined as the non-zero root r = R of the

generalized Lundberg Eq. (2). Identifying the roots of this Eq. (2) is a critical prerequisite, as these roots
characterize the singularities required to derive the explicit analytical expression for the ruin probability.

2.3 Farlie-Gumbel-Morgenstern Copula

We utilize the FGM copula specifically to introduce a dependence structure between claim sizes and inter-
claim times while maintaining mathematical tractability, which is essential for obtaining closed-form solutions.
Definition 3 [14]. 4 copula is a function C:[0,1] X [0,1] — [0,1] that satisfies:

a Cw,0)=C0,v)=0andC(u,1) =u; C(1,v) =v, forallu,v € [0,1].
b. C(uy,vy) — C(uq,vy) — C(uy,vy) + C(ug,v1) 20, forany0 <uy <u; <land0<v; <v, <1
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The following presents Sklar’s theorem, which lies at the core of copula theory and underpins many
applications in statistical theory.

Theorem 1 [14]. If H is a joint distribution with marginals F and G, then there exists a copula C such that
H(x,y) = C(F(x), G(y)) for all x,y € [—o0,]. When F and G are continuous, the copula C is unique.
Conversly, any copula C combined with marginals F and G via H(x,y) = C(F(x), G(y)) yields a valid joint

distribution with those marginals.

For continuous marginals, the theorem extends to densities by

h(x,y) = c(F(), GO F ()9, (3)
2
where the copula density is c(u,v) = 2 acu(;l:)’ thus cleanly separating marginal behavior from dependence
through C. As canonical example, the Farlie-Gumbel-Morgenstern (FGM) copula is given by
Cw,v) =uwr(l+0(1—w)(1l-)), 4)

with 8 € [-1,1]. FGM copula reduces to independence at & = 0, which matches the product copula for
independent margins. Differentiating C yields the copula density

clu,v) =1+6(1 —-2uw)(1 - 2v). (5)

The FGM copula is selected primarily for its mathematical tractability. Unlike Archimedean copulas (e.g.,
Clayton, Gumbel, or Frank) which model stronger dependence but complicate analytical derivations, the FGM
copula’s polynomial structure allows us to derive an explicit closed-form solution for the ruin probability using
Laplace transforms. This analytical tractability is essential for the specific objectives of this study.

2.4 Modification of Rouche’s Theorem

Theorem 2 [15]. Let f(2) and g(z) be analytic function in the open disk {|z| < 1} and continuous on the
boundary {|z| < 13}, and assume that |f(z2)| > |g(2)| for all boundary points with z # 1, while f(1) =

—g(1) # 0 holds at z = 1. If f (z) and g(z) differentiable at z = 1 and satisfy %

of zeros of f (z) + g(2) in |z| < 1 equals to number of zeros of f (z) in |z| < 1 minus one, i.e. Zrqg = Zy — 1.

> 0, then number

This theorem is a modified version of Rouche’s theorem that applies when the usual sufficient condition
|f(2)] > |g(2)| does notholdatz = 1. We apply Theorem 2 to rigorously verify the existence and number
of roots in the right half-plane, ensuring the validity of the partial fraction decomposition used in the final
derivation.

2.5 Laplace Transform

This integral transform is the primary mathematical tool employed in this study to convert the complex
integro-differential equation of ruin probability into a solvable algebraic equation.

Definition 4 [16]. Assume there exists cy € R such that fooo e t|f(t)|dt < oo. The Laplace transform of
f(t), denoted L{f (t)}(s) = f*(s), is defined by f*(s) = fooo e Stf(t)dt for s € C with Re(s) = c.

Some key properties of the Laplace transform include linearity, transforms of derivatives and the
convolution theorem:

a. Linearity: for constants a,b and transform L{f(¢)}(s) = f*(s) and L{g(t)}(s) = g*(s), satisfies
L{af(t) + bg(t)}(s) = af*(s) + bg*(s), which follows directly from linearity of the integral.
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b. Derivatives: L{f'(t)}(s) = sf*(s) — f(0) and, more generally, L{ Fm (t)}(s) =s"f*(s) —
n n—-k £(k-1) (0)
k=15" " f .

c. Convolution: if (f * g)(t) = f:f(v)g(t — v)dv, then L{(f * g)(®)}(s) = f*(s)g*(s).
2.6 Lagrange Interpolation

Lagrange interpolation is a polynomial interpolation method that constructs the unique polynomial of
lowest degree that passes exactly through a given set of n 4+ 1 data points (x;,y;) fori = 0,1, ..., n.
Definition 5 [17]. Given distinct nodes x, ..., X, with values Yy, ..., yn, the Lagrange interpolation is f(x) =
k=0 Yk Lx(x), where the Lagrange basis functions are Ly (x) = [k %for k=0,1,..,n

k=)

This polynomial f(x) uniquely interpolates the given data and provides the desired estimate of the
dependent variable at the target abscissa x. In our derivation, this interpolation technique is specifically applied
to reconstruct the numerator polynomial of the ruin probability’s Laplace transform based on the roots
identified from Lundberg's equation.

3. RESULT AND DISCUSSION
Given a probability space (£, F,P) that accommodates all events and stochastics processes employed in
this paper.
3.1 Definition of the Risk Model and the Dependence Structure based on FGM Copula
3.1.1 The Two Types of Claims Risk Model

We consider a classical risk model extended to accommodate two distinct categories of claims, denoted as
type-I and type-II. These types are differentiated by their frequency and severity characteristics:

a. Type-I claims: represented by the claim counting process {N; (t),t = 0} with intensity 4; > 0 and
claim sizes {X;};>; having a cumulative distribution function (c.d.f.) Fy. This type typically
characterizes high-frequency, low-severity risks.

b. Type-II claims: represented by the claim counting process {N,(t),t = 0} with intensity A, > 0 and
claim sizes {Yj}jzl having a c.d.f. Fy. This type typically characterizes low-frequency, high-severity

risks.

Let S;(t) = Zli\':lit) X; and S,(¢t) = Z?’i(lt) Y; denote the aggregate claim amounts for type-I and type-II,

respectively. The insurer's surplus process at time t > 0 denote by U(t), is defined as

Ny (t) N (t)
U(t)=u+ct—51(t)—52(t)=u+ct—ZXL-—Z16- (6)
i=1 =1

where u = U(0) > 0 is the initial surplus, and premiums are collected continuously at rate ¢ > 0. Eq. (6)
illustrates the dynamic behavior of the surplus. The capital increases continuously due to premium income ct.
However, it decreases due to two simultaneous claim processes with different behaviors, type-I claims cause
frequent, small drops in the surplus, while type-II claims cause rare but large drops. The inter-arrival times
corresponding to the claim counting processes are defined as follows:

a. Type-I inter-arrival times: let T}, denote the time elapsed between the (k — 1)-th and the k-th claim
of type-I. The sequence {Tj}r»; consists of independent and identically distributed (i.i.d.)
exponential random variables with rate ;.
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b. Type-II inter-arrival times: let T}, denote the time elapsed between the (k — 1)-th and the k-th claim
of type-II. The sequence {T} };»1 consists of i.i.d. exponential random variables with rate A,.

Regarding the independence assumptions, the processes governing type-I claims ({N;(t)},{X;}) are
assumed to be mutually independent of those governing type-II claims ({Nz (®)}, {16]) However, consistent
with the objective of this study, we allow for a dependence structure within each claim type, specifically

U(t)

r Y

S

T T T Ty
T]_ TQ f? Td‘

between the claim size and its inter-arrival time which is modeled in the following subsection. An illustrative
sample path of the surplus U(t) is shown in the Figure 1.

Figure 1. Illustrative sample path of the surplus U(t)

We denote the time of ruin by t. This variable represents the first time the insurer's surplus drops below
zero. Its mathematical form is given by

T=min{t:t > 0,U(t) < 0}. (7)

If the surplus remains non-negative for all ¢ = 0, then 7 = co. The ruin probability given initial surplus u is
denoted by 1 (u) and defined as
Yu) = P(r < o|U(0) = w). (®)
Observe that N,(t) and N,(t) denote the numbers of type-I and type-II claims in the interval (0, t],
respectively. Let N(t) be the total number of claims of either type, so that N(t) = N;(t) + N,(¢t).
{N(t),t = 0} is a Poisson process with rate 1; + A,. Since {N(t), t = 0} is a Poisson process, the probability
of more than one claim occurring in a short interval of length h > 0 is o(h). This mathematical property
implies that type-I and type-II claims almost surely do not occur simultaneously. Consequently, the event of
ruin is triggered by a single claim belonging uniquely to either type-I or type-1I, making these two ruin events

mutually exclusive. Because of this mutual exclusivity and not merely due to the independence of the arrival
processes, the total ruin probability can be defined as the sum of the individual probabilities

Y@ = (W) + P (W), )
with 0 < ¢, (u) < 1, where 1, (u) denotes the probability of ruin caused by a claim of type k, for k € {1, 2}.
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3.1.2 The Dependence Structure

In this paper, the type-I claim sizes {X;} and their interarrival times {T;} are not assumed independent, their
dependence is modeled via a copula. Similarly, the type-II claim sizes {Y;} are dependent on their interarrival

times {Tj} . Consider the i.i.d. sequence of random vectors {(X;, T;)};>; foreach i = 1, the dependence between

X; and T; is modeled using the FGM copula with parameter 6; € [—1,1]. Likewise, the i.i.d. sequence

{(Y}, 7_“])} is such that, for each j = 1. The dependence between Y; and '1_"] is modeled using the FGM copula
j=1

with parameter 6, € [—1,1]. This assumption implies that the size of the i-th claim depends only on the
interarrival time between the (i — 1)-th and the i-th claims.

By Sklar’s theorem (see Theorem 1), the joint ¢.d.f. of (X;, T;) is

Fxr(x,t) = C(Fx(x), Fr(t))
= Fx()Fr(t) + 01 Fx () Fr(t)(1 — Fx () (1 — Fr.(©). (10)

Using Eq. (3) and Eq. (5), the joint p.d.f of (X;, T;) is given by

frxr(x,t) = C(FX(X), FT(t))fX(x)fT(t)
= [1+6,(1 — 2Fx())(1 — 2Fr(D)] fx ) £ ()
= fx O fr () + 01 fx () fr(©)(1 — 2Fx () (1 — 2F(D)). (11)

Let hy (x) = fx(x)(1 — 2F4(x)). Since T; are i.i.d. exponential with rate A;, we have Fr(t) = 1 — e %%, and
fr(t) = A;e ™t From Eq. (11), we have

frr(ot) = Aie M f(x) + 01 hy (x) (22,6724t — 2 e Mt), (12)
for x = 0,t = 0. From Eq. (12), the conditional joint p.d.f. of the bivariate (X;, T;) is given by
fxr(x, OP(T > t)

fxrir<r(x,t) =

P(T <T)
A+ A)e %2t fy 1 (x, t)
- M ' (13)
By a similar argument as above, the joint p.d.f. of (¥}, ’I_}) and the conditional joint p.d.f. of the bivariate (Y, 7_"])
is given by
frr@,0) = 26722 f, () + 020y () (222672720 — 2pe™72t), (14)
(A + Az)e_ﬂltfy,f (y, t)

(15)

fX,T|T<T(x; t) = 7
2

fory = 0,t = 0, where hy(y) := fy(y)(l — ZFY(y)).

To ensure the insurer is almost surely solvent, the solvability condition must hold for the entire portfolio.
Using the law of total expectation, the premium rate ¢ is determined such that the expected premium income
exceeds the expected aggregate claim amounts from both type-I and type-II. This condition is expressed as

P(T < TE[cT —X|IT < T+ P(T < T)E[cT - Y|T <T]> 0. (16)
3.2 Lundberg’s Equation

This section derives the Lundberg’s equation for the two types of claim risk process. This single equation
characterizes the aggregate risk by unifying the contributions of both claim types. Using the law of total
expectation, we condition on the first claim occurrence to distinguish between the two types. Consequently,
the equation is constructed as the sum of two components, the first term corresponds to the scenario where a
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type-I claim occurs first, and the second term corresponds to a type-II claim occurring first. This relationship
is expressed as

P(T < DE[es“T-P|T < T] + P(T < DE[eS“TV|T < T] = 1. (17)
Since T~Exp(4,) and T~Exp(A,) are independent, it follows that P(T < T) = and P(T<T)= o /1
1 2
Given in Eqgs. (12)-(15), the left-hand side of Eq. (17) can be written as
P(T < T)IE[eS(CT‘X)|T < T+ P(T < TE[esCT-V|T < T]
f f scte=sx [11e ™M (x) + O1hy (x) (224, €2ME — A e~M1b)|e A2t dxdt
/11 + /12
+ scte=sy [}, e~ A2t + 6,h 20,e%M2t — ), et |ehitg dt]
/11_{_/12 [f f [ ) 2 Y(J/)( 2 )] y (18)
Combining Egs. (17) and (18), we obtain
A A+ Ay . . 20, + 1) A+ A,
A+ A, {/11 T2, = sc 1K)+ Ouhx(s) [2/11 t A, —sc A+ A, —sc
Ay M+, ) ) 2(A + 13) A+
N {/11 T 7, —sc OO (s) [/11 T 20, —sc A+, —sc
=1, (19)

with fy (s), fy (s), hx (s), hy (s) denoting the Laplace transforms of fy (x), fy (y), hx (x), hy (y), respectively.

Proposition 1 Consider the Lundberg’s equation given in Eq. (19). If 81 # 0 and 8, + 0, then Eq. (19) has
three roots 01, 04, 03 with Re(9;) > 0 for i = 1,2, and one root equal to 0, namely 95 = 0.

Proof. The proof begins by rewriting the Lundberg’s equation in Eq. (19) into the form

A
A+, =

20, o ]

2+ A —sc A+ 4, —sc
+Al + AZ — SC (fY(S) + QZhY(S)) [Al + 212 — SC B 11 + AZ - SC] B

Multiplying both sides by the polynomial (1, + A, — s¢)(24; + A, — sc)(4; + 21, — sc), we obtain
91(s) +9,(s) =0, 1)

where  9;(s) = 1,221 + 1, — sc)(A4, + 24, — sc) fy (s) + 0;hx(s)[2A, (A1 + A, — sc) (A, + 24, — sc) —

MQ2A + 25 —sc)(A + 24, —sc)] + 2,2A + A, — sc) (A + 22, — so) fy (s) + 0,hy () [24,(A4 + 4, —

sc)(2A; + A, —sc) —A,(2A; + A, —sc)(A; + 24, —sc)], and  9,(s) = —(A; + 1, —sc)(2A4; + 1, —

sc)(A; + 21, — sc). Both 9, (s) and 9,(s) are analytic in the right half-plane (except possibly at s = 0) and

continuous on its boundary, since Laplace transforms are analytic for Re(s) > 0 and polynomials are entire.

— () + 00 0)|

(20)

By considering limiting domain D = I}im {s: |1 - £| = 1}, applying Theorem 2 and solvability condition in

(16), it follows that the equation 9; (s) + 9, (s) = 0 has the same number of roots inside D as 9, (s) = 0 minus
one. As 9, (s) has three roots, Eq. (21) has exactly two roots with Re(g;) > 0, for i = 1, 2 and one trivial root
is zero. This completes the proof. [ |

3.3 Integro-differential Equation

By Eq. (9) the ruin probability can be written as the sum of the probabilities of ruin caused type-I and
type-1I claims, Y (u) = 1 (u) + P, (u). This section’s goal is to formulate an integro-differential equation for
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the ruin probability caused type-I claims, ¥,(u) and type-II claims, ,(u). To calculate ¥, (u), by
conditioning on the time and the amount of the first claim, there are four different possible scenarios:

a type-I claim of size x with x < u + ct,

a type-I claim of size x with x > u + ct, in which case ¥, (u) = 1,
a type-II claim of size y with y < u + ct,

d. atype-II claim of size y with y > u + ct, in which case ¥, (u) = 0.

c o8

Considering these four scenarios, we have

Y, (W) =P(T<T)

u+ct
f Y1 (u+ ct — x) fx rir<7(x, t)dxdt
0o Yo

+f f fxrir<r(x, t)dxdt
0

u+tct

_ u+ct
+P(T<T) fo fo Y1 (u + ct — Y)fyrr<r (v, t)dydt. 22)

Eq. (22) comprises three integral terms corresponding to the non-zero scenarios. The first term represents
scenario (a), where a type-I claim occurs (T < T) but does not cause ruin. The second term represents scenario
(b), where a type-I claim causes immediate ruin, the probability is 1, leaving only the density function. The
third term represents scenario (c), where a type-II claim occurs (T < T) but does not cause ruin. Note that
scenario (d) does not appear in the equation because if ruin is caused by a type-II claim, the probability of ruin
caused by type-I is zero (1 (u) = 0), causing the term to vanish.

Let
v=u-+ct,
o1(v) = f P10 — 0 fy () dx +my (0); my @) = f fe()dx,
0 v
0, (v) = f 01 (0 — D hy () dx +my©®); my(v) = j hy (0, (23)
0 v
05(v) = f D10 = 0 fy Oy, 04(v) = f 1w — Vhy G dy.
0 0
Given from Egs. (13), (12), and (23), Eq. (22) becomes

o0 v 21,6, [ v
Y, (w) ——f _('11+'12)( ) 1W)dv + 2 1] e_mlHZ)(T)az(v)dv
u

o ¥ o v—u
e—(ll+lz) ) 2(v)dv+?zj e—(11+lz)( c )0'3(17)(117

u

L
o A0, [© v_u
u u

) Y, (w) — 1 (u), where 1 (u) denotes the derivative of 15 (u) with respect to u, then it

(24)
A1+2,

Let G, (u) = (

follows that we obtaln

2016, (A + 25 24 + 25\ (7 v-u
Gy = (it St e—(2/11+/12)( - )az(v)dv
c u

c c
2,0, (A + Ay A+ 225\ [© _ v-u
L2t 2( 1+H4 A z)f o (Aa+22) (%5 )0'4(U)d17
c c c u
A A0 A A,0
+— 01 () + == 0 () + Z 03(0) + = 0 (w). 25)
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@) G;(w) — G{(w), where G (u) denotes the derivative of G; (u) with respect

Next, suppose G,(u) = (

to u, it follows that we obtain

2/1 0, (A, — A * v-u A 224+ A
G, () = 2 2( 1 . z)f o (/11+2/12)( . )04(v)dv C1 (%) o, ()
u

c2
A14,0 Ay (224 + A A0, (241 — A A
+== 1az(u)+—2(#) o3(u) + = 2(#)04(11)——10;(11)
146, nC 1,0 ‘ ¢
—=—= o) ~ Z o) - = o). 26)
From Eq. (26), differentiate G, (1) with respect to u, and thus we obtain
A+ 21
(F=72) 6o - 63

= C5,00(W) — Cproi(W) + Cprroy’ (W) + C5,0,(W) — Cpro3 (W)
+ Cppoy' (W) + Cpyo3(W) — Cpro3(w) + Cppro3’ (W) + Cg,04(w)

—CLol) + Cppof (), @7)
where
11(211 + AZ)(Al + 212) 311 (Al + AZ) Al
o = c3 ’CU{ - c2 Loyl T c’
111291(11 + 212) 1191 (Al + 312) 1191
o, = 3 Cop = c2 e T 28
1,20 % ) (A + 24, 32,00 + 12) Az %)
C0'3 3 ) C0_3 2 ) Ué’ = ? )
Allz 92 (22.1 + 2.2) 1292 (311 + AZ) 1202
Ccr4 = 3 ’Cdi —CZ ) Ui’ = P

The left-hand side of Eq. (27) can be expressed into 1 (u) terms as follows

A+ 22
(F22) 6200 = 6300 = 1 (@) = € @) + € (@) — 1" ), 29)
with
(A + 2D + 2,) (A4 + 224,) (221 + A2) (A1 + 243) + 3(44 + 2)?
Yy = c3 ’ Clllll = c? ’ 30
44 +23) (30)
="
Combining Egs. (27) and (29), we obtain
Cprthr (W) = Cyr Y1 (W) + Cortpy ) — 4" ()
= Cg,01(w) = Coro{(W) + Cprrof’ (W) + C5y02(W) — Cpro3 (W) G1)

+ Coproy’ (W + Cp03(W) — Cpro3(w) + Cpyro3' (W) + Cg,04(w)
c G‘;U‘;(u) + Cyroq (w).

3.4 Laplace Transform of Ruin Probability

Solving the integro-differential equation in Eq. (31) directly is analytically challenging due to the presence of
convolution terms and high-order derivatives. To overcome this complexity, we apply the Laplace transform
with respect to the initial surplus u. The application of this transform is mathematically valid because the ruin
probability 1 (u) is a bounded function defined on [0, ), which ensures the convergence of the integral. The
primary aim of applying the Laplace transform is to convert the complex integro-differential equation into a
simpler algebraic equation in the s-domain. This allows us to solve for Yy (s) explicitly before inverting it
back to finding the solution 1, (). Based on this approach, the result is stated in the following proposition.
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Proposition 2 In the two types of claims risk model with dependence structure by FGM copula, the Laplace
transform of the ruin probability caused type-k claims ;. (u) is given by
k k
B (s) + B ()

* = 32
Ve~ S (C0,6) - 5,00) 42

where 91 (s) and 9,(s) are those defined in Eq. (21). The function Bl(k) (s) is

00 = (G 5 i s+ (G

O2k-1 "oy

| S+ Cons?)my(s),  (33)

03

and Bz(k) (s) is the polynomial in s is given by

3 3
s—0
596 =50 () | [] 22 5
j=1 k=1,k] €~ G

with 04, 02, 03 denoting the three roots of the Lundberg’s equation.

Proof. The proof of the proposition is provided only for the ruin probability caused type-I claims. Using
properties of the Laplace transform, taking the Laplace transform on both side in Eq. (31), and isolate ¥ (s),
we obtain

Pi(s) = gi—g; (35)
where
M (s) = (C,, — Cors + Cairsz)m’{(s) +(Cy, — Cors+ Caérsz)m’z"(s)
+(Cp1 = Coprs)my(0) + (Cyp = Cpr5)m3(0) = Crm; (0) = Cp1mi (0)
- [(CU{: £ (0) + oy (0) + Cop £y (0) + Coprhy (0) + Cy — Cyors + 57 )1 (0)
+ (5= Cyr)p1(0) + 1/11'(0)] , (36)

Di(s) = Cy, — Co, fx () — C5,hx () — Co, fy () — Cg, Ry (s)

H[Cotf(5) + Cophis(8) + Coyfi (8) + Cophi () =y |5

+[C1p’1’ — Corfx (8) = Corhi(s) — Conr fy (s) — Cgi'h?'(s)]sz — 53, (37)
Note that the Lundberg’s Eq. (21) can be written as ¢3D; (s) = 0. By means of Proposition 1, the denominator
of Eq. (35) has three roots g4, 05, 03. Due to the analyticity of the numerator of Eq. (35), it requires that these
are also roots of the numerator. Futhermore, we define V; (s) = Bl(l) (s) + Bz(l) (s), such that Bl(l)(s) is the
sum of all terms that include mj(s) and m;(s) and Bz(l) (s) is the sum of the remaining terms. It is found that
Bz(l)(s) is a polynomial of degree two. Since N;(g;) =0, for i = 1,2,3, it can be written Bz(l)(gi) =
—Bl(l) (0;). By using the Lagrange interpolation formula (see Definition 5) at the three points @4, 05,05 We

obtain Eq. (34). For the Laplace transform of 15 (s), the derivation follows the same analogy for ¥ (s). This
completes the proof. [ |

Thus, by using the linearity property of Laplace transform and Proposition 2, it follows that *(s) = ¥1(s) +
Y5(s). To revert the solution from the Laplace domain back to the original surplus domain, we observe that
the resulting expression Y (s) for is a rational function or a ratio of polynomials. Consequently, the inversion
is performed by applying partial fraction decomposition to expand 1 (s) into a sum of elementary terms. The
explicit solution ¥, (u) is then obtained by applying the inverse Laplace transform term by term. This inversion
process is demonstrated explicitly for the case of exponentially distributed claim sizes in Section 3.6.
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3.5 Analysis of Ruin Probability when u = 0

This section we analyze of ruin probability by considering the case of u = 0. The roots of the Lundberg’s
equation, as discussed in section 3.2, are fundamental to the subsequent analysis. We assume the roots
01, 02,03 are all distinct. Let K = CU{,fX(O) + Caéth(O) + Ca.?l’lfy(o) + Cai/hy(o). Note that 04, 05, and 03

are roots of NV; (s) = 31(1) (s) + 32(1) (s). From Eq. (36), the following holds

(3 + Cyp = Cypor+ 02 )2 (0) + (01 = Cypr )i (0) + 97/ (0)
2

= Z [(Ca]'- - Cg]’.’Qi)mj(O) - Cajum}'-(O) + (Caj - Ccr]'-gl' + C,,J'.'Qiz) m{(gi)], (38)
=1

fori =1,2,3. Let J(p;) be the right-hand side of Eq. (38). Since the roots g4, 0,, and g5 are all distinct, we
can form a system of equations which is expressed in the following matrix equation

2

1+ Cyp = Cyperter®) (= Cyp) @] [ieen

(3 +Cyy = Cypea+02) (02— Cyp) 1||91(0) | = [1Ce2)|. (39)

(5 +Cpr — Cyros +03%) (03— Cyr) 111 0] es)
Based on the Eq. (39), our objective is to determine the value of 1, (0). This can be accomplished using several
standard methods from linear algebra. One approach is to solve the entire system by finding the inverse of the
coefficient matrix. Alternatively, Cramér’s rule can be applied to directly compute the value for ¥, (0). For
the 1, (0), the derivation follows the same analogy for 1; (0). From Eq. (9), it follows that 1)(0) = 1, (0) +
¥, (0).

3.6 Exponentially Distributed Claims

This section presents an analytical formula for the probability ruin (u). It is further assumed that type-I
and type-II claim sizes are exponentially distributed, characterized by the c.d.f Fx(x) =1 — e~ %1%, fy(x) =
ae” %, the Laplace transform fy (s) = a;(@; + s)7! and the c.d.fFy(y) =1 —e %Y, f;(y) = aye %Y,

the Laplace transform fy(s) = az(a; +s)7t. It follows that hy(s) = ays((2a; + s)(a; + s))_1 and

hy(s) = azs((ZaZ + s)(a, + s))_l. From Eq. (23), we obtain mj(u) = —fx(u), mi(s) = (a; +s)71,
’ * -1

m5(u) = —hy(u) and m3(s) = —al((Zal +s)(a; + s))

Proposition 3 Let —R;, forj =1, ..,4, be the distinct roots with Re(Rj) > 0. Then the explicit expression for
the ruin probability caused type-k claims P, (u) for u = 0 is given by

4
Yr(w) = Z @y je R’ (40)
j=1
where
3 4
H)(_ (k)
) Y [ S
and

Bik) (s) + ng) (s) = [Bl(k) (s) + Bz(k) (s)] a; + s)(a; +s)2ay + s)(ay + s). 42)

Proof. First we substitute fy (s), hx(s), fy (s) and hy (s) into Lundberg’s Eq. (21) to obtain an equation that
is a seventh-degree polynomial. This Lundberg’s equation has three roots, g; with Re(g;) > 0 fori = 1,2, 3,
and four additional roots, —R; with Re(Rj) > 0 for j = 1, ..., 4. Consequently, the Lundberg’s equation can

be factored as
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—c*(s —01)(s —02)(s = 03)(s + R1)(s + Ry)(s + R3)(s + Ry) = 0. (43)
We then define the functions £#(s) as follows
£(s) = [6‘3(—191 (s) =1, (s))](2a1 + s)(a; + s)2a, + s)(a, + ), (44)

and the functions Bik) (s) + ng) (s) in Eq. (42). This gives the Laplace transform of the ruin probability
caused type-I claims

BY(s) + BN (s)
2(s) ’

The denominator of Eq. (45) can be expressed in terms of the roots of the Lundberg equation in Eq. (43). Using
the Lagrange interpolation formula, the numerator of Eq. (45) can be written as

Pils) = (45)

4

3 4
00+ 200 - Y 0w v [ [(S725) [ (%)l @
J : J

i=1 k=1 k=1k#j

By substituting BP) (s) + Bgl) (s) in Eq. (46) back into the Eq. (45), several terms cancel out, simplifying the
expression to

4

Vils) = z sz-ﬂl-l’}j?-' (47)
j

_]=1
where @y ; is defined in Eq. (41). Finally, applying the inverse Laplace transform term by term and utilizing
the linearity property, we obtain the explicit expression for the ruin probability caused by type-I claims in the
surplus domain 1, (u). The probability ruin caused type-II claims is derived analogously to that of type-I
claims. Hence, we can obtain the total ruin probability. [ |

To illustrate, a numerical example is provided as follows.

Example 1. (Case of type-I claims occurring frequently but with a low average claim sizes, and type-II
claims occurring rarely but with a high average claim sizes) Consider a risk model with two types of claims.
The claim arrival processes for type-I, N; (t), and type-I1, N, (t), follow Poisson processes with intensities 1,
= 1.0 and A, = 0.2, respectively. The claim sizes for each type are assumed to follow an exponential
distribution. The type-I claim size, X, is exponentially distributed with parameter a; = 1.0, and the type-II
claim size, Y, is exponentially distributed with parameter a, = 0.2. The dependence structure between the
claim size and the inter-arrival time for each respective type is modeled by the FGM copula, with dependence
parameters 8; and 6,. These parameters are specifically chosen to reflect the distinct risk profiles of the two

claim types, 4; > A, reflects the higher frequency of type-I claims, while the mean claim sizes ai =1 and
1

ai = 5 reflect the higher severity of type-II claims. The premium rate received by the company is ¢ = 2.5.
2

This value satisfies the solvability condition, as the premium rate exceeds the total expected aggregate claim

o A, A . . . .
cost per unit time a—l + a—z = 2 < 2.5. To obtain the numerical results, we substitute these parameters into the
1 2

general explicit solution derived in Proposition 3. Specifically, the ruin probability functions presented below
are calculated using Eq. (40), with the coefficients @), ; determined by Eq. (41) and the exponents —R; derived
from the roots of the Lundberg’s equation. The analytical expression for the ruin probability, 1(uw), will be
calculated by computing the ruin probabilities caused by claim type-I and claim type-II, and then summing the
results (derived with python). This is done for the following copula parameter scenarios. The resulting specific
formulas for each dependence scenario are as follows:

a. Independent case (6; = 6, = 0)
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P (u) = 0.0792885558¢ 065934664 1 (720685677 0060673621,

b. Positive dependence case (6; = 0.5 and 6, = 0.5)

PP (w) = 0.0116759934¢~189367845u 1 (0877710888 ~073066379u
+0.0404778770-3581965U | (564344106 009610876,

c. Negative depende

nce case (6,

—0.5and 8, = —-0.5)

PP (u) = —0.00353898483¢~2:09502807u + (0,0757249995¢ ~0-58228366u
—0.0330136003 ¢ 045446869 | () 847300244 ¢ 0:03276363u,

d. Hybrid dependence I case (8; = 0.5 and 6, = —0.5)

YhPI(u) = 0.00573757401e~ 189322719 (,055817724¢070970477u
—0.0171933897¢ 0439492771 1 (.81192188¢ 003893979,

e. Hybrid dependence II case (8; = —0.5 and 8, = 0.5)

PP () = —0.0077826902¢ 209472779 (0.090208067 ¢ ~0-62769491u
+0.0468799411¢~0-34837961u | () 618983132¢~0-08792132u,

(48)

(49)

(50)

(D

(52)

The resulting specific formulas for the total ruin probability ¥ (u) for each dependence scenario are
presented in Eqgs. (48)-(52). It is important to note that each of these total probability functions is the sum of
the individual ruin probabilities caused by type-I and type-II claims ((w) = 11(w) + ¥, (w)). While we
present the aggregate closed form solutions here for brevity, the behaviors of the individual components
P41 (u) and Y, (u) are analyzed and visualized in Figure 2.
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Figure 2. A comparative analysis of ruin probabilities across five dependence scenarios.
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Figure 2 provides a visual decomposition of the analytical results presented in Eqs. (48)-(52). While the
equations above quantify the total solvency risk, this figure separates the contribution of each claim type.
Specifically, the hump observed in the 1, (1) curve corresponds to the specific dominant exponential terms in
the explicit formula for type-II claims, which differ from the rapidly decaying terms governing type-I claims.
Consistently across all subplots, the curve for ), (1) decreases sharply, whereas 1, (1) exhibits a characteristic
hump and decays much more slowly. This distinct behavior is driven by the fundamental difference in severity.
type-I claims, being small, are quickly absorbed by the premium income as the initial surplus u increases. In
contrast, type-II claims are high-severity events. Even with a moderate initial surplus, the risk of a single
catastrophic claim wiping out the capital remains significant, causing 1, (1) to contribute more heavily to ruin
at intermediate and high surplus levels. For independent case, The results obtained in this scenario are validated
against the results found in Example 3.1 by Han et al. [18]. Figure 3 illustrates the significant impact of
different dependence structures on the ruin probability. The negative dependence scenario consistently yields
the highest ruin probability, representing the most perilous risk profile. Intuitively, this occurs because negative
correlation pairs large claim amounts with short inter-arrival times. Consequently, the insurer faces significant
capital outflows before sufficient premium income has been accumulated to absorb the shock, drastically
increasing the likelihood of insolvency. Conversely, the positive dependence scenario produces the lowest risk,
implying the most favorable condition for solvency. This safety arises because large claims are associated with
longer inter-arrival times. This delay provides the insurer with a crucial recovery period to build up premium
reserves. This accumulated buffer acts as a financial cushion, making the surplus more resilient when a large
loss eventually occurs. The independent case serves as an essential benchmark, situated between these
extremes, highlighting that ignoring correlation structures can lead to a significant misestimation of risk..
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Table 1. Ruin probability with varying dependence scenario at u = 10
Scenario P, (W) P, (W) 4
Independent 0.05117228 | 0.34184081 | 0.39301309
Positive dependence 0.02621920 | 0.19084138 | 0.21706058
Negative dependence | 0.08533234 | 0.52512682 | 0.61045916
Hybrid dependence I | 0.05056335 | 0.49931905 | 0.54988240
Hybrid dependence I | 0.04832009 | 0.21023392 | 0.25855400

—— Independent (8, =0,8; =0)

—— Positive dependence (8, =0.5,8: =0.5)

0.8 1 —— MNegative dependence (8, = =05, 8; = —0.5)
—— Hyhrid dependence | (6, =0.5,8; =-0.5)
—— Hyhrid dependence Il {§, = —0.5, & = 0.5)

Ruin probability @(u)

0 20 40 60 80 100
Initial surplus (u)

Figure 3. The effect of different dependence structures on the ruin probability, Y (u), for a given initial
surplus, u.

To substantiate the visual findings with concrete numerical evidence, Table 1 presents the ruin probability
at a specific surplus point, namely u = 10. The data reveals a substantial divergence in risk levels, the ruin
probability in the negative dependence case (0.610) is nearly three times higher than in the positive dependence
case (0.217). This magnitude underscores that ignoring dependence structures can lead to severe capital
underestimation. Furthermore, the hybrid scenarios provide a crucial insight into which claim type drives the
overall risk. Comparing the two hybrid cases, hybrid I (6; > 0, 8, < 0) yields a much higher ruin probability
(0.550) than hybrid IT (6; < 0,6_2 > 0) (0.259). This stark difference indicates that the dependence structure
of type-II claims acts as the dominant factor. Specifically, when type-II claims have a negative dependence (as
in hybrid I), the risk escalates drastically, regardless of the behavior of type-I claims. Practically, this implies
that insurers must prioritize modeling the dependence of high-severity claim lines, as misjudging this specific
correlation poses the greatest threat to solvency.

The findings from Example 1 align with established literature [8-12], confirming that negative dependence
poses the greatest threat to solvency while positive dependence offers a protective effect. However, this study
extends those insights by explicitly isolating the mechanism within a two claim framework. Our analysis
demonstrates that the total solvency risk is not equally driven by both claim types. Instead, it is
disproportionately dominated by the dependence structure of the high-severity claims. Consequently, a
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negative dependence within this specific category amplifies the ruin probability far more drastically than
similar behavior in type-I claims.

From an actuarial perspective, these results provide critical decision-making directives. The distinct impact
of type-II claims implies that insurers cannot rely on aggregate risk models that ignore claim heterogeneity.
Instead, capital allocation and pricing strategies must explicitly account for the correlation structure of
catastrophic lines. Specifically, if a negative correlation is detected in high-severity claim lines, actuaries must
advocate for significantly higher solvency margins or targeted reinsurance coverage to mitigate the elevated
risk of rapid capital depletion.

4. CONCLUSIONS

The insurance surplus process is modeled using a continuous-time risk model with two types of claims and
FGM copula dependence. In this model, there are two types of claims, named type-I and type-II, with different
characteristics in terms of frequency and claim severity. The dependence between inter-claim time and claim
size is modeled with an FGM copula. We derive the integro-differential equation for probability ruin. For
exponentially distributed claim amounts, an analytic form of the ruin probability is obtained. A numerical
illustration confirms that the ruin probability decreases as the initial surplus increases and shows that the FGM
copula dependence influences the ruin probability.

A key advantage of this two type risk model is its ability to decompose the solvency risk within a mixed
portfolio. By distinguishing between frequent, small claims (type-I) and rare, high-severity claims (type-II),
the model reveals that the latter are the primary drivers of ruin, particularly under negative dependence. This
distinction is critical for insurers managing mixed portfolios, as traditional aggregate models often obscure the
specific correlation risks associated with high-severity lines. By isolating these components, the derived
explicit formulas enable actuaries to implement more precise capital allocation and targeted reinsurance
strategies. This ensures that reserves are not merely based on average aggregate losses, but are specifically
calibrated to withstand the shocks from high-severity components.

This study has two primary limitations that should be considered when interpreting the results. First, the
model assumes that the claim arrival for both types follows a Poisson process. While standard, this assumption
implies memoryless arrivals, potentially limiting the model’s ability to capture risk contagion or seasonal
clustering often observed in real world data. Second, the use of the FGM copula limits the analysis to weak
dependence structures between inter-claim times and claim sizes. Consequently, the derived ruin probabilities
may underestimate the true solvency risk in scenarios characterized by strong tail dependence, such as during
major catastrophic events. Based on these limitations, future research could be extended in several specific
directions. First, to overcome the weak dependence constraint of the FGM copula, future studies should employ
Archimedean copulas such as Clayton, Gumbel, or Frank copula. These copula families allow for the modeling
of stronger tail dependence, which is critical for capturing the correlation between extreme events. Second, the
assumption of exponentially distributed claim sizes could be relaxed to better fit real world data. Extending
the model to incorporate heavy-tailed distributions (e.g., Pareto or Weibull), particularly for type-II claims,
would provide a more realistic assessment of solvency risk. Finally, the claim arrival assumption could be
generalized by replacing the Poisson process with a renewal process (e.g., Erlang or Cox processes) or a
Hawkes process to capture potential clustering and risk contagion effects.
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