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Abstract   

This paper introduces a novel continuous-time risk model that extends the classical 

framework by incorporating two types of claims and a dependence structure 

between claim sizes and inter-claim times using a Farlie-Gumbel-Morgenstern 

(FGM) copula. The methodology begins with the construction of a Lundberg’s 

equation and the determination of its non-negative roots. Subsequently, the integro-

differential equation for the ruin probability is derived, from which the Laplace 

transform of the ruin probability is obtained. For the specific case of exponentially 
distributed claim sizes, an explicit analytical expression for the ruin probability is 

derived to examine the effects of dependence parameters and distributional 

characteristics. A series of numerical experiments with varying FGM copula 

parameters demonstrate that the ruin probability decreases as the initial surplus 

increases and is significantly influenced by the strength of the dependence 

structure. From a practical perspective, distinguishing between claim types allows 

insurers to identify which category poses the greatest threat to solvency, thereby 

supporting more targeted underwriting and accurate capital allocation strategies. 
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1. INTRODUCTION 

Foundational to ruin theory is the classical Cramér-Lundberg risk model in continuous time, introduced by 

Filip Lundberg in 1903 and further developed by Harald Cramér in the 1930s [1]. The model assumes that 

insurance claims arrive randomly according to a Poisson process {𝑁(𝑡), 𝑡 ≥ 0} with intensity 𝜆, while claim 

sizes 𝑋𝑖 are independent and identically distributed and independent of the interarrival times 𝑇𝑖. Premium 

income accrues continuously at rate 𝑐(𝑡), which is often taken to be constant with 𝑐 > 0. A central implication 

is that the probability of ruin decreases exponentially with increasing initial surplus 𝑢. The insurer’s surplus at 

time 𝑡 is modeled as 𝑈(𝑡) = 𝑢 + 𝑐𝑡 − 𝑆(𝑡), where the aggregate claims process is 𝑆(𝑡) = ∑ 𝑋𝑖
𝑁(𝑡)
𝑖=1  [2]. 

Despite its relative simplicity, the model has significantly influenced actuarial theory and insurance practice. 

It is widely used for computing ruin probabilities and quantifying bankruptcy risk. Consequently, this utility 

has motivated continued research and extensions of the framework. Consistent with this framework, Maulida 

et al. [3] adopts the Cramér-Lundberg risk model with claim sizes follow a mixtures of two exponential 

distributions and solves the corresponding integro-differential system numerically to assess solvency risk. The 

findings show that the probability of ruin decreases exponentially as the initial surplus increases, preserving 

the classical exponential-decay behavior even under mixture-exponential claim sizes. 

Since their inception, insurance companies have undergone substantial development. A key evolution is the 

diversification of product offerings, which has resulted in distinct claim categories across various lines of 

business. In health insurance, small claims such as routine treatment, prescription drugs, and general 

practitioner visits occur frequently but at lower cost, whereas large claims such as major surgery or prolonged 

serious care are rare yet financially substantial. Jiang and Ma [4], Shija and Jacob [5] investigated ruin 

probabilities for two-claim-type models under varied surplus processes. In this framework, the aggregate 

claims at time 𝑡 are expressed as 𝑆(𝑡) = ∑ 𝑋𝑖
𝑁1(𝑡)
𝑖=1 + ∑ 𝑌𝑗

𝑁2(𝑡)
𝑗=1 . As in the Cramér–Lundberg assumption, 

several works assume independence between claim sizes and interarrival times, although this assumption often 
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fails to reflect practical realities in operational data. Empirically, Shi et al. [6] documented a positive, albeit 

weak, dependence between claim frequency and severity in motor insurance. Frees et al. [7] reported a similar 

weak association for claim frequency and severity in property insurance. 

A standard approach to capture dependence between two random variables is to use a copula, which links 

their marginal distributions to a joint distribution. In the context of estimating ruin probabilities, the Farlie-

Gumbel-Morgenstern (FGM) copula is frequently used to model the dependence between claim sizes and inter-

claim times. Various studies have embedded this dependence structure into different risk frameworks. For 

instance, Cossette et al. [8] applied the FGM copula to the classical Cramér-Lundberg model, while Cossette 

et al. [9] incorporated it into a risk model with dividend strategies. Furthermore, Chadjiconstantinidis and 

Vrontos [10] analyzed an Erlang(n) risk model, Ragulina [11] investigates a stochastic premium risk model, 

and Adékambi and Takouda [12] examined a perturbed risk model. Although these works successfully derived 

explicit formulas for ruin probability under exponentially distributed claim sizes, their frameworks remained 

confined to a single claim type. 

In this research, we investigate ruin probabilities within a Cramér-Lundberg risk model that incorporates 

two types of claims. A critical distinction in our framework lies in the dependence structure: while the 

occurrences of type-I and type-II claims are assumed to be mutually independent processes, we explicitly 

model the dependence within each claim type, specifically between inter-claim times and claim sizes using the 

FGM copula. This approach allows us to capture the time-size correlation inherent in each line of business 

while retaining tractable marginal distributions. We define two claim types by categorizing insurance claims 

into two groups that exhibit distinct risk characteristics. These distinctions may arise from differences in 

frequency, claim severity, source of occurrence, or operational handling processes. This separation is intended 

to render the risk model more realistic and accurate. The primary objective of this study is to derive an explicit 

analytical expression for the ruin probability within a risk model characterizing two types of claims and FGM 

copula dependence. To achieve this, we first establish the model assumptions, identify the positive roots of the 

generalized Lundberg’s equation, and formulate the corresponding integro-differential equation. 

Subsequently, we obtain the Laplace transform and apply these results to the case of exponentially distributed 

claim sizes. Finally, numerical illustrations are provided to demonstrate the impact of dependence structures 

on solvency risk. 

2. METHODS 

The approach implemented in this study involved a comprehensive literature review, gathering pertinent 

information from diverse sources including books and academic journals related to the subject matter. 

Additionally, numerical simulations were performed using Python. The methodology employed in this study 

follows a systematic four-step framework. First, we construct the risk model by defining two independent 

Poisson processes for claim arrivals and employing the FGM copula to model the dependence between claim 

sizes and inter-claim times. Second, we derive the Lundberg’s equation and utilize a modification of Rouche’s 

theorem to determine the existence of its roots in the complex plane. Third, we formulate the integro-

differential equation for the ruin probability and apply the Laplace transform to obtain its solution in the 

transform domain, the Lagrange interpolation formula is then used to facilitate the inverse transformation, 

yielding an explicit analytical expression. Finally, numerical evaluations are implemented using Python to 

compute the ruin probabilities based on the derived explicit formulas. These numerical experiments are 

designed to simulate various dependence scenarios (independent, positive, negative, and hybrid) and analyze 

the sensitivity of solvency risk to changes in copula parameters and initial surplus levels.   

2.1 Poisson Process and Compound Poisson Process 

A stochastic process {𝑁(𝑡), 𝑡 ≥ 0} is termed a counting process when 𝑁(𝑡) represents the number of events 

up to time 𝑡 and satisfies the properties 𝑁(𝑡) ≥ 0, 𝑁(𝑡) ∈ ℤ, and for  𝑠 < 𝑡 one has 𝑁(𝑠) < 𝑁(𝑡), with the 

increment 𝑁(𝑡) − 𝑁(𝑠) giving the number of events occurring on (𝑠, 𝑡]. Within this framework, the process is 
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said to possess independent increments if for any sequence 0 ≤ 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 the random 

variables 𝑁(𝑡1) − 𝑁(𝑡0), … , 𝑁(𝑡𝑛) − 𝑁(𝑡𝑛−1) are mutually independent, equivalently, counts over pairwise 

disjoint time intervals are independent. 

Definition 1 [13]. A Poisson process with intensity 𝜆 is a counting process {𝑁(𝑡), 𝑡 ≥ 0} such that 𝑁(0) = 0 

and the paths are nondecreasing with 𝑁(𝑠) ≤ 𝑁(𝑡) for all 𝑠 < 𝑡, the small-interval transition probabilities 

satisfy ℙ(𝑁(𝑡 + ℎ) = 𝑛 + 1 | 𝑁(𝑡) = 𝑛) = 𝜆ℎ + 𝑜(ℎ), ℙ(𝑁(𝑡 + ℎ) = 𝑛 + 𝑚 | 𝑁(𝑡) = 𝑛) = 𝑜(ℎ) for 𝑚 >

1, and ℙ(𝑁(𝑡 + ℎ) = 𝑛 | 𝑁(𝑡) = 𝑛) = 1 − 𝜆ℎ + 𝑜(ℎ), and the process has independent increments, meaning 

that counts over disjoint time intervals are independent. 

If the sequence of interarrival times {𝑇𝑛, 𝑛 = 1, 2, … } corresponds to a Poisson counting process, then {𝑇𝑛} 

consists of independent identically distributed (i.i.d.) exponential random variables with rate 𝜆. In line with 

this, if {𝑁1(𝑡), 𝑡 ≥ 0} and {𝑁2(𝑡), 𝑡 ≥ 0} are independent Poisson processes with rates 𝜆1 and 𝜆2, then 𝑁(𝑡) =

𝑁1(𝑡) + 𝑁2(𝑡) is Poisson process with rate 𝜆1 + 𝜆2. 

Definition 2 [13]. A stochastic process {𝑆(𝑡), 𝑡 ≥ 0} is called a compound Poisson process if it can be written 

as  𝑆(𝑡) = ∑ 𝑋𝑖
𝑁(𝑡)
𝑖=1  for 𝑡 ≥ 0, where {𝑁(𝑡)} is a Poisson process and {𝑋𝑖}𝑖≥1 are i.i.d. random variables that 

are independent of {𝑁(𝑡)}. 

In this study, this stochastic framework serves as the fundamental for modeling the arrival frequency and 

aggregate magnitude of both claim types within the surplus process. 

2.2 Lundberg’s Generalized Equation of Cramér-Lundberg Risk Model 

In the Cramér-Lundberg risk model, the surplus process is modeled by 

 

𝑈(𝑡) = 𝑢 + 𝑐(𝑡) − ∑ 𝑋𝑖

𝑁(𝑡)

𝑖=1

, (1) 

where 𝑢 is the initial capital and 𝑁(𝑡) counts claims up to time 𝑡 while the aggregate claims are 𝑆(𝑡) =

∑ 𝑋𝑖
𝑁(𝑡)
𝑖=1  . The premium inflow is deterministic with 𝑐(𝑡) = 𝑐𝑡, for 𝑐 > 0.  The claim count starts at 𝑁(0) = 0 

and follows a homogeneous Poisson process of rate 𝜆, and the claim sizes {𝑋𝑖} are i.i.d. with finite mean and 

independent of {𝑁(𝑡)}, yielding a compound Poisson structure for 𝑆(𝑡) and the standard continuous-time 

surplus dynamics used in ruin analysis. The interarrival times 𝑇1, 𝑇2 , … are defined by 𝑇0 = 0 and 𝑇𝑘 = 𝑡𝑘 −

𝑡𝑘−1 for 𝑘 > 0, where 𝑡𝑘 denotes the jump time of the 𝑘-th claim, and these interarrival variables are i.i.d. 

exponential random variables with rate 𝜆. It follows that the 𝑛-th arrival jump time satisfies 𝑡𝑛 = ∑ 𝑇𝑖
𝑛
𝑖=1 . 

Cossette et al. [8] derived Lundberg’s generalized equation of Cramér-Lundberg risk model for force of 

interest 𝛿 = 0 is given by 

 𝔼[𝑒𝑟(𝑐𝑇−𝑋)] = 1, (2) 

the adjustment coefficient is denoted −𝑅 with 𝑅 > 0 and is defined as the non-zero root 𝑟 = 𝑅 of the 

generalized Lundberg Eq. (2). Identifying the roots of this Eq. (2) is a critical prerequisite, as these roots 

characterize the singularities required to derive the explicit analytical expression for the ruin probability. 

2.3 Farlie-Gumbel-Morgenstern Copula 

We utilize the FGM copula specifically to introduce a dependence structure between claim sizes and inter-

claim times while maintaining mathematical tractability, which is essential for obtaining closed-form solutions. 

Definition 3 [14]. A copula is a function 𝐶: [0,1] × [0,1] → [0,1] that satisfies: 

a. 𝐶(𝑢, 0) = 𝐶(0, 𝑣) = 0 and 𝐶(𝑢, 1) = 𝑢;  𝐶(1, 𝑣) = 𝑣, for all 𝑢, 𝑣 ∈ [0,1]. 

b. 𝐶(𝑢2, 𝑣2) − 𝐶(𝑢1, 𝑣2) − 𝐶(𝑢2, 𝑣1) + 𝐶(𝑢1, 𝑣1) ≥ 0, for any 0 ≤ 𝑢1 ≤ 𝑢2 ≤ 1 and 0 ≤ 𝑣1 ≤ 𝑣2 ≤ 1. 
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The following presents Sklar’s theorem, which lies at the core of copula theory and underpins many 

applications in statistical theory. 

Theorem 1 [14]. If 𝐻 is a joint distribution with marginals 𝐹 and 𝐺, then there exists a copula 𝐶 such that 

𝐻(𝑥, 𝑦) = 𝐶(𝐹(𝑥), 𝐺(𝑦)) for all 𝑥, 𝑦 ∈ [−∞, ∞]. When 𝐹 and 𝐺 are continuous, the copula 𝐶 is unique. 

Conversly,  any copula 𝐶 combined with marginals 𝐹 and 𝐺 via 𝐻(𝑥, 𝑦) = 𝐶(𝐹(𝑥), 𝐺(𝑦)) yields a valid joint 

distribution with those marginals.  

For continuous marginals, the theorem extends to densities by 

 ℎ(𝑥, 𝑦) = 𝑐(𝐹(𝑥), 𝐺(𝑦))𝑓(𝑥)𝑔(𝑦), (3) 

where the copula density is 𝑐(𝑢, 𝑣) =
𝜕2𝐶(𝑢,𝑣)

𝜕𝑢𝜕𝑣
, thus cleanly separating marginal behavior from dependence 

through 𝐶. As canonical example, the Farlie-Gumbel-Morgenstern (FGM) copula is given by 

 𝐶(𝑢, 𝑣) = 𝑢𝑣(1 + 𝜃(1 − 𝑢)(1 − 𝑣)), (4) 

with 𝜃 ∈ [−1,1].  FGM copula reduces to independence at 𝜃 = 0, which matches the product copula for 

independent margins. Differentiating 𝐶 yields the copula density 

 𝑐(𝑢, 𝑣) = 1 + 𝜃(1 − 2𝑢)(1 − 2𝑣). (5) 

The FGM copula is selected primarily for its mathematical tractability. Unlike Archimedean copulas (e.g., 

Clayton, Gumbel, or Frank) which model stronger dependence but complicate analytical derivations, the FGM 

copula’s polynomial structure allows us to derive an explicit closed-form solution for the ruin probability using 

Laplace transforms. This analytical tractability is essential for the specific objectives of this study. 

 

2.4 Modification of Rouche’s Theorem 

Theorem 2 [15]. Let 𝑓(𝑧) and 𝑔(𝑧) be analytic function in the open disk {|𝑧| < 1} and continuous on the 

boundary {|𝑧| < 1}, and assume that |𝑓(𝑧)| > |𝑔(𝑧)| for all boundary points with 𝑧 ≠ 1, while 𝑓(1) =

−𝑔(1) ≠ 0 holds at 𝑧 = 1. If 𝑓(𝑧) and 𝑔(𝑧) differentiable at 𝑧 = 1 and satisfy  
𝑓′(1)+𝑔′(1)

𝑓(1)
> 0, then number 

of zeros of 𝑓(𝑧) + 𝑔(𝑧) in |𝑧| < 1 equals to number of zeros of 𝑓(𝑧) in |𝑧| < 1 minus one, i.e. 𝑍𝑓+𝑔 = 𝑍𝑓 − 1. 

This theorem is a modified version of Rouche’s theorem that applies when the usual sufficient condition 

|𝑓(𝑧)|  >  |𝑔(𝑧)| does not hold at 𝑧 =  1. We apply Theorem 2 to rigorously verify the existence and number 

of roots in the right half-plane, ensuring the validity of the partial fraction decomposition used in the final 

derivation. 

2.5 Laplace Transform 

This integral transform is the primary mathematical tool employed in this study to convert the complex 

integro-differential equation of ruin probability into a solvable algebraic equation.  

Definition 4 [16]. Assume there exists 𝑐0 ∈ ℝ such that ∫ 𝑒−𝑐0𝑡|𝑓(𝑡)|𝑑𝑡
∞

0
< ∞. The Laplace transform of 

𝑓(𝑡), denoted ℒ{𝑓(𝑡)}(𝑠) = 𝑓⋆(𝑠), is defined by 𝑓⋆(𝑠) = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡
∞

0
 for 𝑠 ∈ ℂ with 𝑅𝑒(𝑠) ≥ 𝑐0. 

Some key properties of the Laplace transform include linearity, transforms of derivatives and  the 

convolution theorem: 

a. Linearity: for constants 𝑎, 𝑏 and transform ℒ{𝑓(𝑡)}(𝑠) = 𝑓⋆(𝑠) and ℒ{𝑔(𝑡)}(𝑠) = 𝑔⋆(𝑠), satisfies 

ℒ{𝑎𝑓(𝑡) + 𝑏𝑔(𝑡)}(𝑠) = 𝑎𝑓⋆(𝑠) + 𝑏𝑔⋆(𝑠), which follows directly from linearity of the integral. 
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b. Derivatives: ℒ{𝑓′(𝑡)}(𝑠) = 𝑠𝑓⋆(𝑠) − 𝑓(0) and, more generally, ℒ{𝑓(𝑛)(𝑡)}(𝑠) = 𝑠𝑛𝑓⋆(𝑠) −

∑ 𝑠𝑛−𝑘𝑛
𝑘=1 𝑓(𝑘−1)(0). 

c. Convolution: if (𝑓 ∗ 𝑔)(𝑡) = ∫ 𝑓(𝑣)𝑔(𝑡 − 𝑣)𝑑𝑣
𝑡

0
, then ℒ{(𝑓 ∗ 𝑔)(𝑡)}(𝑠) = 𝑓⋆(𝑠)𝑔⋆(𝑠). 

2.6 Lagrange Interpolation 

Lagrange interpolation is a polynomial interpolation method that constructs the unique polynomial of 

lowest degree that passes exactly through a given set of 𝑛 + 1 data points (𝑥𝑖 , 𝑦𝑖) for 𝑖 = 0, 1, … , 𝑛. 

Definition 5 [17]. Given distinct nodes 𝑥0, … , 𝑥𝑛 with values 𝑦0, … , 𝑦𝑛, the Lagrange interpolation is 𝑓(𝑥) =

∑ 𝑦𝑘
𝑛
𝑘=0 𝐿𝑘(𝑥), where the Lagrange basis functions are 𝐿𝑘(𝑥) = ∏

𝑥−𝑥𝑗

𝑥𝑘−𝑥𝑗
𝑗≠𝑘  for 𝑘 = 0, 1, … , 𝑛. 

This polynomial 𝑓(𝑥) uniquely interpolates the given data and provides the desired estimate of the 

dependent variable at the target abscissa 𝑥. In our derivation, this interpolation technique is specifically applied 

to reconstruct the numerator polynomial of the ruin probability’s Laplace transform based on the roots 

identified from Lundberg's equation. 

3. RESULT AND DISCUSSION 

Given a probability space (Ω, ℱ, ℙ) that accommodates all events and stochastics processes employed in 

this paper. 

3.1 Definition of the Risk Model and the Dependence Structure based on FGM Copula 

3.1.1 The Two Types of Claims Risk Model 

We consider a classical risk model extended to accommodate two distinct categories of claims, denoted as 

type-I and type-II. These types are differentiated by their frequency and severity characteristics: 

a. Type-I claims: represented by the claim counting process {𝑁1(𝑡), 𝑡 ≥ 0} with intensity 𝜆1 > 0 and 

claim sizes {𝑋𝑖}𝑖≥1 having a cumulative distribution function (c.d.f.) 𝐹𝑋. This type typically 

characterizes high-frequency, low-severity risks. 

b. Type-II claims: represented by the claim counting process {𝑁2(𝑡), 𝑡 ≥ 0} with intensity 𝜆2 > 0 and 

claim sizes {𝑌𝑗}
𝑗≥1

 having a c.d.f. 𝐹𝑌. This type typically characterizes low-frequency, high-severity 

risks. 

Let 𝑆1(𝑡) = ∑ 𝑋𝑖
𝑁1(𝑡)
𝑖=1  and 𝑆2(𝑡) = ∑ 𝑌𝑗

𝑁2(𝑡)
𝑗=1  denote the aggregate claim amounts for type-I and type-II, 

respectively. The insurer's surplus process at time 𝑡 ≥ 0 denote by 𝑈(𝑡), is defined as 

 

𝑈(𝑡) = 𝑢 + 𝑐𝑡 − 𝑆1(𝑡) − 𝑆2(𝑡) = 𝑢 + 𝑐𝑡 − ∑ 𝑋𝑖

𝑁1(𝑡)

𝑖=1

− ∑ 𝑌𝑗

𝑁2(𝑡)

𝑗=1

, (6) 

where 𝑢 = 𝑈(0) ≥ 0 is the initial surplus, and premiums are collected continuously at rate 𝑐 > 0. Eq. (6) 

illustrates the dynamic behavior of the surplus. The capital increases continuously due to premium income 𝑐𝑡. 

However, it decreases due to two simultaneous claim processes with different behaviors, type-I claims cause 

frequent, small drops in the surplus, while type-II claims cause rare but large drops. The inter-arrival times 

corresponding to the claim counting processes are defined as follows: 

a. Type-I inter-arrival times: let 𝑇𝑘 denote the time elapsed between the (𝑘 − 1)-th and the 𝑘-th claim 

of type-I. The sequence {𝑇𝑘}𝑘≥1 consists of independent and identically distributed (i.i.d.) 

exponential random variables with rate 𝜆1. 
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b. Type-II inter-arrival times: let 𝑇̅𝑘 denote the time elapsed between the (𝑘 − 1)-th and the 𝑘-th claim 

of type-II. The sequence {𝑇̅𝑘}𝑘≥1 consists of i.i.d. exponential random variables with rate 𝜆2. 

Regarding the independence assumptions, the processes governing type-I claims ({𝑁1(𝑡)}, {𝑋𝑖}) are 

assumed to be mutually independent of those governing type-II claims ({𝑁2(𝑡)}, {𝑌𝑗}). However, consistent 

with the objective of this study, we allow for a dependence structure within each claim type, specifically 

between the claim size and its inter-arrival time which is modeled in the following subsection. An illustrative 

sample path of the surplus 𝑈(𝑡) is shown in the Figure 1. 

 

Figure 1. Illustrative sample path of the surplus 𝑈(𝑡) 

We denote the time of ruin by 𝜏. This variable represents the first time the insurer's surplus drops below 

zero. Its mathematical form is given by 

 𝜏 = min{𝑡: 𝑡 ≥ 0, 𝑈(𝑡) < 0}. (7) 

If the surplus remains non-negative for all 𝑡 ≥ 0, then 𝜏 = ∞.  The ruin probability given initial surplus 𝑢 is 

denoted by 𝜓(𝑢) and defined as 

 𝜓(𝑢) = ℙ(𝜏 < ∞|𝑈(0) = 𝑢). (8) 

Observe that 𝑁1(𝑡) and 𝑁2(𝑡) denote the numbers of type-I and type-II claims in the interval (0, 𝑡], 

respectively. Let 𝑁(𝑡) be the total number of claims of either type, so that 𝑁(𝑡) = 𝑁1(𝑡) + 𝑁2(𝑡). 

{𝑁(𝑡), 𝑡 ≥ 0} is a Poisson process with rate 𝜆1 + 𝜆2. Since {𝑁(𝑡), 𝑡 ≥ 0} is a Poisson process, the probability 

of more than one claim occurring in a short interval of length ℎ > 0 is 𝑜(ℎ). This mathematical property 

implies that type-I and type-II claims almost surely do not occur simultaneously. Consequently, the event of 

ruin is triggered by a single claim belonging uniquely to either type-I or type-II, making these two ruin events 

mutually exclusive. Because of this mutual exclusivity and not merely due to the independence of the arrival 

processes, the total ruin probability can be defined as the sum of the individual probabilities 

 𝜓(𝑢) = 𝜓1(𝑢) + 𝜓2(𝑢), (9) 

with 0 ≤ 𝜓𝑘(𝑢) ≤ 1, where 𝜓𝑘(𝑢) denotes the probability of ruin caused by a claim of type 𝑘, for 𝑘 ∈ {1, 2}. 
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3.1.2 The Dependence Structure 

In this paper, the type-I claim sizes {𝑋𝑖} and their interarrival times {𝑇𝑖} are not assumed independent, their 

dependence is modeled via a copula. Similarly, the type-II claim sizes {𝑌𝑗} are dependent on their interarrival 

times {𝑇̅𝑗} . Consider the i.i.d. sequence of random vectors {(𝑋𝑖 , 𝑇𝑖)}𝑖≥1 for each 𝑖 ≥ 1, the dependence between 

𝑋𝑖 and 𝑇𝑖 is modeled using the FGM copula with parameter 𝜃1 ∈ [−1,1]. Likewise, the i.i.d. sequence 

{(𝑌𝑗, 𝑇̅𝑗)}
𝑗≥1

 is such that, for each 𝑗 ≥ 1. The dependence between 𝑌𝑗  and 𝑇̅𝑗  is modeled using the FGM copula 

with parameter 𝜃2 ∈ [−1,1]. This assumption implies that the size of the 𝑖-th claim depends only on the 

interarrival time between the (𝑖 − 1)-th and the 𝑖-th claims. 

By Sklar’s theorem (see Theorem 1), the joint c.d.f. of (𝑋𝑖 , 𝑇𝑖) is  

 𝐹𝑋,𝑇(𝑥, 𝑡) = 𝐶(𝐹𝑋(𝑥), 𝐹𝑇(𝑡)) 

= 𝐹𝑋(𝑥)𝐹𝑇(𝑡) + 𝜃1𝐹𝑋(𝑥)𝐹𝑇(𝑡)(1 − 𝐹𝑋(𝑥))(1 − 𝐹𝑇(𝑡)). (10) 

Using Eq. (3) and Eq. (5), the joint p.d.f of (𝑋𝑖 , 𝑇𝑖) is given by 

 

 𝑓𝑋,𝑇(𝑥, 𝑡) = 𝑐(𝐹𝑋(𝑥), 𝐹𝑇(𝑡))𝑓𝑋(𝑥)𝑓𝑇(𝑡) 

= [1 + 𝜃1(1 − 2𝐹𝑋(𝑥))(1 − 2𝐹𝑇(𝑡))] 𝑓𝑋(𝑥)𝑓𝑇(𝑡) 

= 𝑓𝑋(𝑥)𝑓𝑇(𝑡) + 𝜃1𝑓𝑋(𝑥)𝑓𝑇(𝑡)(1 − 2𝐹𝑋(𝑥))(1 − 2𝐹𝑇(𝑡)).  (11) 

Let ℎ𝑋(𝑥) ≔ 𝑓𝑋(𝑥)(1 − 2𝐹𝑋(𝑥)). Since 𝑇𝑖 are i.i.d. exponential with rate 𝜆1, we have 𝐹𝑇(𝑡) = 1 − 𝑒−𝜆1𝑡 , and 

𝑓𝑇(𝑡) = 𝜆1𝑒−𝜆1𝑡 .  From Eq. (11), we have 

 𝑓𝑋,𝑇(𝑥, 𝑡) = 𝜆1𝑒−𝜆1𝑡𝑓𝑋(𝑥) + 𝜃1ℎ𝑋(𝑥)(2𝜆1𝑒−2𝜆1𝑡 − 𝜆1𝑒−𝜆1𝑡), (12) 

for 𝑥 ≥ 0, 𝑡 ≥ 0. From Eq. (12), the conditional joint p.d.f. of the bivariate (𝑋𝑖 , 𝑇𝑖) is given by 

 
𝑓𝑋,𝑇|𝑇<𝑇̅(𝑥, 𝑡) =

𝑓𝑋,𝑇(𝑥, 𝑡)ℙ(𝑇̅ > 𝑡)

ℙ(𝑇 < 𝑇̅)
 

=
(𝜆1 + 𝜆2)𝑒−𝜆2𝑡𝑓𝑋,𝑇(𝑥, 𝑡)

𝜆1
. 

(13) 

By a similar argument as above, the joint p.d.f. of (𝑌𝑗, 𝑇̅𝑗) and the conditional joint p.d.f. of the bivariate (𝑌𝑗, 𝑇̅𝑗) 

is given by 

 𝑓𝑌,𝑇̅(𝑦, 𝑡) = 𝜆2𝑒−𝜆2𝑡𝑓𝑌(𝑦) + 𝜃2ℎ𝑌(𝑥)(2𝜆2𝑒−2𝜆2𝑡 − 𝜆2𝑒−𝜆2𝑡), (14) 

 
𝑓𝑋,𝑇|𝑇<𝑇̅(𝑥, 𝑡) =

(𝜆1 + 𝜆2)𝑒−𝜆1𝑡𝑓𝑌,𝑇̅(𝑦, 𝑡)

𝜆2
, (15) 

for 𝑦 ≥ 0, 𝑡 ≥ 0, where ℎ𝑌(𝑦) ≔ 𝑓𝑌(𝑦)(1 − 2𝐹𝑌(𝑦)). 

To ensure the insurer is almost surely solvent, the solvability condition must hold for the entire portfolio. 

Using the law of total expectation, the premium rate 𝑐 is determined such that the expected premium income 

exceeds the expected aggregate claim amounts from both type-I and type-II. This condition is expressed as 

 ℙ(𝑇 < 𝑇̅)𝔼[𝑐𝑇 − 𝑋|𝑇 < 𝑇̅] + ℙ(𝑇̅ < 𝑇)𝔼[𝑐𝑇̅ − 𝑌|𝑇̅ < 𝑇] > 0. (16) 

3.2 Lundberg’s Equation 

This section derives the Lundberg’s equation for the two types of claim risk process. This single equation 

characterizes the aggregate risk by unifying the contributions of both claim types. Using the law of total 

expectation, we condition on the first claim occurrence to distinguish between the two types. Consequently, 

the equation is constructed as the sum of two components, the first term corresponds to the scenario where a 
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type-I claim occurs first, and the second term corresponds to a type-II claim occurring first. This relationship 

is expressed as 

 ℙ(𝑇 < 𝑇̅)𝔼[𝑒𝑠(𝑐𝑇−𝑋)|𝑇 < 𝑇̅] + ℙ(𝑇̅ < 𝑇)𝔼[𝑒𝑠(𝑐𝑇̅−𝑌)|𝑇̅ < 𝑇] = 1. (17) 

Since 𝑇~𝐸𝑥𝑝(𝜆1) and  𝑇̅~𝐸𝑥𝑝(𝜆2) are independent, it follows that ℙ(𝑇 < 𝑇̅) =
𝜆1

𝜆1+𝜆2
 and ℙ(𝑇̅ < 𝑇) =

𝜆2

𝜆1+𝜆2
. 

Given in Eqs. (12)-(15), the left-hand side of Eq. (17) can be written as 

 ℙ(𝑇 < 𝑇̅)𝔼[𝑒𝑠(𝑐𝑇−𝑋)|𝑇 < 𝑇̅] + ℙ(𝑇̅ < 𝑇)𝔼[𝑒𝑠(𝑐𝑇̅−𝑌)|𝑇̅ < 𝑇] 

=  
𝜆1

𝜆1 + 𝜆2
 [∫ ∫ 𝑒𝑠𝑐𝑡𝑒−𝑠𝑥

∞

0

∞

0

[𝜆1𝑒−𝜆1𝑡𝑓𝑋(𝑥) + 𝜃1ℎ𝑋(𝑥)(2𝜆1𝑒2𝜆1𝑡 − 𝜆1𝑒−𝜆1𝑡)]𝑒−𝜆2𝑡𝑑𝑥𝑑𝑡] 

+
𝜆2

𝜆1 + 𝜆2
 [∫ ∫ 𝑒𝑠𝑐𝑡𝑒−𝑠𝑦

∞

0

∞

0

[𝜆2𝑒−𝜆2𝑡𝑓𝑌(𝑦) + 𝜃2ℎ𝑌(𝑦)(2𝜆2𝑒2𝜆2𝑡 − 𝜆2𝑒−𝜆2𝑡)]𝑒−𝜆1𝑡𝑑𝑦𝑑𝑡]. 
(18) 

Combining Eqs. (17) and (18), we obtain 

 𝜆1

𝜆1 + 𝜆2
{

𝜆1 + 𝜆2

𝜆1 + 𝜆2 − 𝑠𝑐
 𝑓𝑋

⋆(𝑠) + 𝜃1ℎ𝑋
⋆ (𝑠) [

2(𝜆1 + 𝜆2)

2𝜆1 + 𝜆2 − 𝑠𝑐
−

𝜆1 + 𝜆2

𝜆1 + 𝜆2 − 𝑠𝑐
]} 

+
𝜆2

𝜆1 + 𝜆2
{

𝜆1 + 𝜆2

𝜆1 + 𝜆2 − 𝑠𝑐
 𝑓𝑌

⋆(𝑠) + 𝜃2ℎ𝑌
⋆ (𝑠) [

2(𝜆1 + 𝜆2)

𝜆1 + 2𝜆2 − 𝑠𝑐
−

𝜆1 + 𝜆2

𝜆1 + 𝜆2 − 𝑠𝑐
]} 

= 1, (19) 

with 𝑓𝑋
⋆(𝑠), 𝑓𝑌

⋆(𝑠), ℎ𝑋
⋆ (𝑠), ℎ𝑌

⋆ (𝑠) denoting the Laplace transforms of 𝑓𝑋(𝑥), 𝑓𝑌(𝑦), ℎ𝑋(𝑥), ℎ𝑌(𝑦), respectively. 

Proposition 1 Consider the Lundberg’s equation given in Eq. (19). If 𝜃1 ≠ 0 and 𝜃2 ≠ 0, then Eq. (19) has 

three roots 𝜚1, 𝜚2, 𝜚3 with 𝑅𝑒(𝜚𝑖) > 0 for 𝑖 = 1, 2, and one root equal to 0, namely 𝜚3 = 0. 

Proof. The proof begins by rewriting the Lundberg’s equation in Eq. (19) into the form 

 𝜆1

𝜆1 + 𝜆2 − 𝑠𝑐
 (𝑓𝑋

⋆(𝑠) + 𝜃1ℎ𝑋
⋆ (𝑠)) [

2𝜆1

2𝜆1 + 𝜆2 − 𝑠𝑐
−

𝜆1

𝜆1 + 𝜆2 − 𝑠𝑐
] 

+
𝜆2

𝜆1 + 𝜆2 − 𝑠𝑐
 (𝑓

𝑌
⋆ (𝑠) + 𝜃2ℎ𝑌

⋆ (𝑠)) [
2𝜆2

𝜆1 + 2𝜆2 − 𝑠𝑐
−

𝜆2

𝜆1 + 𝜆2 − 𝑠𝑐
] = 1. 

(20) 

Multiplying both sides by the polynomial (𝜆1 + 𝜆2 − 𝑠𝑐)(2𝜆1 + 𝜆2 − 𝑠𝑐)(𝜆1 + 2𝜆2 − 𝑠𝑐), we obtain 

 𝜗1(𝑠) + 𝜗2(𝑠) = 0, (21) 

where 𝜗1(𝑠) = 𝜆1(2𝜆1 + 𝜆2 − 𝑠𝑐)(𝜆1 + 2𝜆2 − 𝑠𝑐)𝑓𝑋
⋆(𝑠) + 𝜃1ℎ𝑋

⋆ (𝑠)[2𝜆1(𝜆1 + 𝜆2 − 𝑠𝑐)(𝜆1 + 2𝜆2 − 𝑠𝑐) −

𝜆1(2𝜆1 + 𝜆2 − 𝑠𝑐)(𝜆1 + 2𝜆2 − 𝑠𝑐)] + 𝜆2(2𝜆1 + 𝜆2 − 𝑠𝑐)(𝜆1 + 2𝜆2 − 𝑠𝑐)𝑓𝑌
⋆(𝑠) + 𝜃2ℎ𝑌

⋆ (𝑠)[2𝜆2(𝜆1 + 𝜆2 −

𝑠𝑐)(2𝜆1 + 𝜆2 − 𝑠𝑐) − 𝜆2(2𝜆1 + 𝜆2 − 𝑠𝑐)(𝜆1 + 2𝜆2 − 𝑠𝑐)], and 𝜗2(𝑠) = −(𝜆1 + 𝜆2 − 𝑠𝑐)(2𝜆1 + 𝜆2 −

𝑠𝑐)(𝜆1 + 2𝜆2 − 𝑠𝑐). Both 𝜗1(𝑠) and 𝜗2(𝑠) are analytic in the right half-plane (except possibly at 𝑠 = 0) and 

continuous on its boundary, since Laplace transforms are analytic for 𝑅𝑒(𝑠) > 0 and polynomials are entire. 

By considering limiting domain 𝐷 = lim
𝑘→∞

{𝑠: |1 −
𝑠

𝑘
| = 1}, applying Theorem 2 and solvability condition in 

(16), it follows that the equation 𝜗1(𝑠) + 𝜗2(𝑠) = 0 has the same number of roots inside 𝐷 as 𝜗2(𝑠) = 0 minus 

one. As 𝜗2(𝑠) has three roots, Eq. (21) has exactly two roots with 𝑅𝑒(𝜚𝑖) > 0, for 𝑖 = 1, 2 and one trivial root 

is zero. This completes the proof.          ∎ 

3.3 Integro-differential Equation 

By Eq. (9) the ruin probability can be written as the sum of the probabilities of ruin caused type-I and 

type-II claims, 𝜓(𝑢) = 𝜓1(𝑢) + 𝜓2(𝑢). This section’s goal is to formulate an integro-differential equation for 
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the ruin probability caused type-I claims, 𝜓1(𝑢) and type-II claims, 𝜓2(𝑢). To calculate 𝜓1(𝑢), by 

conditioning on the time and the amount of the first claim, there are four different possible scenarios: 

a. a type-I claim of size 𝑥 with 𝑥 ≤ 𝑢 + 𝑐𝑡, 

b. a type-I claim of size 𝑥 with 𝑥 > 𝑢 + 𝑐𝑡, in which case 𝜓1(𝑢) = 1, 

c. a type-II claim of size 𝑦 with 𝑦 ≤ 𝑢 + 𝑐𝑡, 

d. a type-II claim of size 𝑦 with 𝑦 > 𝑢 + 𝑐𝑡, in which case 𝜓2(𝑢) = 0. 

Considering these four scenarios, we have 

 
𝜓1(𝑢) = ℙ(𝑇 < 𝑇̅) [∫ ∫ 𝜓1(𝑢 + 𝑐𝑡 − 𝑥)𝑓𝑋,𝑇|𝑇<𝑇̅(𝑥, 𝑡)𝑑𝑥𝑑𝑡

𝑢+𝑐𝑡

0

∞

0

+ ∫ ∫ 𝑓𝑋,𝑇|𝑇<𝑇̅(𝑥, 𝑡)𝑑𝑥𝑑𝑡
∞

𝑢+𝑐𝑡

∞

0

] 

+ ℙ(𝑇̅ < 𝑇) ∫ ∫ 𝜓1(𝑢 + 𝑐𝑡 − 𝑦)𝑓𝑌,𝑇̅|𝑇̅<𝑇(𝑦, 𝑡)𝑑𝑦𝑑𝑡
𝑢+𝑐𝑡

0

∞

0

. 
(22) 

Eq. (22) comprises three integral terms corresponding to the non-zero scenarios. The first term represents 

scenario (a), where a type-I claim occurs (𝑇 < 𝑇̅) but does not cause ruin. The second term represents scenario 

(b), where a type-I claim causes immediate ruin, the probability is 1, leaving only the density function. The 

third term represents scenario (c), where a type-II claim occurs (𝑇̅ < 𝑇) but does not cause ruin. Note that 

scenario (d) does not appear in the equation because if ruin is caused by a type-II claim, the probability of ruin 

caused by type-I is zero (𝜓1(𝑢) = 0), causing the term to vanish.  

Let 

 𝑣 = 𝑢 + 𝑐𝑡, 

𝜎1(𝑣) = ∫ 𝜓1(𝑣 − 𝑥)𝑓𝑋(𝑥)𝑑𝑥 +
𝑣

0

𝑚1(𝑣); 𝑚1(𝑣) = ∫ 𝑓𝑋(𝑥)𝑑𝑥,
∞

𝑣

 

𝜎2(𝑣) = ∫ 𝜓1(𝑣 − 𝑥)ℎ𝑋(𝑥)𝑑𝑥 +
𝑣

0

𝑚2(𝑣); 𝑚2(𝑣) = ∫ ℎ𝑋(𝑥)𝑑𝑥,
∞

𝑣

 

𝜎3(𝑣) = ∫ 𝜓1(𝑣 − 𝑦)𝑓𝑌(𝑦)𝑑𝑦,
𝑣

0

 𝜎4(𝑣) = ∫ 𝜓1(𝑣 − 𝑦)ℎ𝑌(𝑦)𝑑𝑦.
𝑣

0

 

(23) 

Given from Eqs. (13), (12), and (23), Eq. (22) becomes 

 
𝜓1(𝑢) =

𝜆1

𝑐
∫ 𝑒−(𝜆1+𝜆2)(

𝑣−𝑢

𝑐
)
𝜎1(𝑣)𝑑𝑣 +

2𝜆1𝜃1

𝑐
∫ 𝑒−(2𝜆1+𝜆2)(

𝑣−𝑢

𝑐
)
𝜎2(𝑣)𝑑𝑣

∞

𝑢

∞

𝑢

 

−
𝜆1𝜃1

𝑐
∫ 𝑒−(𝜆1+𝜆2)(

𝑣−𝑢

𝑐
)
𝜎2(𝑣)𝑑𝑣

∞

𝑢

+
𝜆2

𝑐
∫ 𝑒−(𝜆1+𝜆2)(

𝑣−𝑢

𝑐
)
𝜎3(𝑣)𝑑𝑣

∞

𝑢

 

+
2𝜆2𝜃2

𝑐
∫ 𝑒−(𝜆1+2𝜆2)(

𝑣−𝑢

𝑐
)
𝜎4(𝑣)𝑑𝑣

∞

𝑢

−
𝜆2𝜃2

𝑐
∫ 𝑒−(𝜆1+𝜆2)(

𝑣−𝑢

𝑐
)
𝜎4(𝑣)𝑑𝑣

∞

𝑢

. 
(24) 

Let 𝐺1(𝑢) = (
𝜆1+𝜆2

𝑐
) 𝜓1(𝑢) − 𝜓1

′ (𝑢), where 𝜓1
′ (𝑢) denotes the derivative of 𝜓1(𝑢) with respect to 𝑢, then it 

follows that we obtain 

 
𝐺1(𝑢) =

2𝜆1𝜃1

𝑐
(

𝜆1 + 𝜆2

𝑐
−

2𝜆1 + 𝜆2

𝑐
) ∫ 𝑒−(2𝜆1+𝜆2)(

𝑣−𝑢
𝑐

)𝜎2(𝑣)𝑑𝑣
∞

𝑢

 

+
2𝜆2𝜃2

𝑐
(

𝜆1 + 𝜆2

𝑐
−

𝜆1 + 2𝜆2

𝑐
) ∫ 𝑒−(𝜆1+2𝜆2)(

𝑣−𝑢
𝑐

)𝜎4(𝑣)𝑑𝑣
∞

𝑢

 

+
𝜆1

𝑐
𝜎1(𝑢) +

𝜆1𝜃1

𝑐
𝜎2(𝑢) +

𝜆2

𝑐
𝜎3(𝑢) +

𝜆2𝜃2

𝑐
𝜎4(𝑢). 

(25) 
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Next, suppose 𝐺2(𝑢) = (
2𝜆1+𝜆2

𝑐
) 𝐺1(𝑢) − 𝐺1

′(𝑢), where 𝐺1
′(𝑢) denotes the derivative of 𝐺1(𝑢) with respect 

to 𝑢, it follows that we obtain 

 
𝐺2(𝑢) = −

2𝜆2
2𝜃2

𝑐2
(

𝜆1 − 𝜆2

𝑐
) ∫ 𝑒

−(𝜆1+2𝜆2)(
𝑣−𝑢

𝑐
)
𝜎4(𝑣)𝑑𝑣

∞

𝑢

+
𝜆1

𝑐
(

2𝜆1 + 𝜆2

𝑐
) 𝜎1(𝑢) 

+
𝜆1𝜆2𝜃1

𝑐
𝜎2(𝑢) +

𝜆2

𝑐
(

2𝜆1 + 𝜆2

𝑐
) 𝜎3(𝑢) +

𝜆2𝜃2

𝑐
(

2𝜆1 − 𝜆2

𝑐
) 𝜎4(𝑢) −

𝜆1

𝑐
𝜎1

′(𝑢) 

−
𝜆1𝜃1

𝑐
𝜎2

′(𝑢) −
𝜆2

𝑐
𝜎3

′(𝑢) −
𝜆2𝜃2

𝑐
𝜎4

′(𝑢). 
(26) 

From Eq. (26), differentiate 𝐺2(𝑢) with respect to 𝑢, and thus we obtain 

 
(

𝜆1 + 2𝜆2

𝑐
) 𝐺2(𝑢) − 𝐺2

′ (𝑢)

= 𝐶𝜎1
𝜎1(𝑢) − 𝐶𝜎1

′ 𝜎1
′(𝑢) + 𝐶𝜎1

′′𝜎1
′′(𝑢) + 𝐶𝜎2

𝜎2(𝑢) − 𝐶𝜎2
′ 𝜎2

′(𝑢)

+ 𝐶𝜎2
′′𝜎2

′′(𝑢) + 𝐶𝜎3
𝜎3(𝑢) − 𝐶𝜎3

′ 𝜎3
′(𝑢) + 𝐶𝜎3

′′ 𝜎3
′′(𝑢) + 𝐶𝜎4

𝜎4(𝑢)

− 𝐶𝜎4
′ 𝜎4

′(𝑢) + 𝐶𝜎4
′′𝜎4

′′(𝑢), (27) 

where  

 
𝐶𝜎1

=
𝜆1(2𝜆1 + 𝜆2)(𝜆1 + 2𝜆2)

𝑐3
, 𝐶𝜎1

′ =
3𝜆1(𝜆1 + 𝜆2)

𝑐2
 , 𝐶𝜎1

′′ =
𝜆1

𝑐
, 

𝐶𝜎2
=

𝜆1𝜆2𝜃1(𝜆1 + 2𝜆2)

𝑐3
, 𝐶𝜎2

′ =
𝜆1𝜃1(𝜆1 + 3𝜆2)

𝑐2
 , 𝐶𝜎2

′′ =
𝜆1𝜃1

𝑐
, 

𝐶𝜎3
=

𝜆2(2𝜆1 + 𝜆2)(𝜆1 + 2𝜆2)

𝑐3
, 𝐶𝜎3

′ =
3𝜆2(𝜆1 + 𝜆2)

𝑐2
 , 𝐶𝜎3

′′ =
𝜆2

𝑐
 , 

𝐶𝜎4
=

𝜆1𝜆2𝜃2(2𝜆1 + 𝜆2)

𝑐3
, 𝐶𝜎4

′ =
𝜆2𝜃2(3𝜆1 + 𝜆2)

𝑐2
 , 𝐶𝜎4

′′ =
𝜆2𝜃2

𝑐
. 

(28) 

The left-hand side of Eq. (27) can be expressed into 𝜓(𝑢) terms as follows 

 
(

𝜆1 + 2𝜆2

𝑐
) 𝐺2(𝑢) − 𝐺2

′ (𝑢) = 𝐶𝜓1
𝜓1(𝑢) − 𝐶𝜓1

′ 𝜓1
′ (𝑢) + 𝐶𝜓1

′′ 𝜓1
′′(𝑢) − 𝜓1

′′′(𝑢), (29) 

with 

 
𝐶𝜓1

=
(𝜆1 + 𝜆2)(2𝜆1 + 𝜆2)(𝜆1 + 2𝜆2)

𝑐3
, 𝐶𝜓1

′ =
(2𝜆1 + 𝜆2)(𝜆1 + 2𝜆2) + 3(𝜆1 + 𝜆2)2

𝑐2
,

𝐶𝜓1
′′ =

4(𝜆1 + 𝜆2)

𝑐
. 

(30) 

Combining Eqs. (27) and (29), we obtain 

 𝐶𝜓1
𝜓1(𝑢) − 𝐶𝜓1

′ 𝜓1
′ (𝑢) + 𝐶𝜓1

′′𝜓1
′′(𝑢) − 𝜓1

′′′(𝑢)

= 𝐶𝜎1
𝜎1(𝑢) − 𝐶𝜎1

′ 𝜎1
′(𝑢) + 𝐶𝜎1

′′𝜎1
′′(𝑢) + 𝐶𝜎2

𝜎2(𝑢) − 𝐶𝜎2
′ 𝜎2

′(𝑢)

+ 𝐶𝜎2
′′𝜎2

′′(𝑢) + 𝐶𝜎3
𝜎3(𝑢) − 𝐶𝜎3

′ 𝜎3
′(𝑢) + 𝐶𝜎3

′′ 𝜎3
′′(𝑢) + 𝐶𝜎4

𝜎4(𝑢)

− 𝐶𝜎4
′ 𝜎4

′(𝑢) + 𝐶𝜎4
′′𝜎4

′′(𝑢). 

(31) 

3.4 Laplace Transform of Ruin Probability 

Solving the integro-differential equation in Eq. (31) directly is analytically challenging due to the presence of 

convolution terms and high-order derivatives. To overcome this complexity, we apply the Laplace transform 

with respect to the initial surplus 𝑢. The application of this transform is mathematically valid because the ruin 

probability 𝜓𝑘(𝑢) is a bounded function defined on [0, ∞), which ensures the convergence of the integral. The 

primary aim of applying the Laplace transform is to convert the complex integro-differential equation into a 

simpler algebraic equation in the 𝑠-domain. This allows us to solve for 𝜓𝑘
⋆ (𝑠) explicitly before inverting it 

back to finding the solution 𝜓𝑘(𝑢). Based on this approach, the result is stated in the following proposition. 
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Proposition 2 In the two types of claims risk model with dependence structure by FGM copula, the Laplace 

transform of the ruin probability caused type-𝑘 claims 𝜓𝑘(𝑢) is given by 

 
𝜓𝑘

⋆ =
𝐵1

(𝑘)(𝑠) + 𝐵2
(𝑘)

(𝑠) 

𝑐−3(−𝜗1(𝑠) − 𝜗2(𝑠))
, (32) 

where 𝜗1(𝑠) and 𝜗2(𝑠) are those defined in Eq. (21). The function 𝐵1
(𝑘)(𝑠) is 

 𝐵1
(𝑘)(𝑠) = (𝐶𝜎2𝑘−1

− 𝐶𝜎2𝑘−1
′ 𝑠 + 𝐶𝜎2𝑘−1

′′ 𝑠2) 𝑚2𝑘−1
⋆ (𝑠) + (𝐶𝜎2𝑘

− 𝐶𝜎2𝑘
′ 𝑠 + 𝐶𝜎2𝑘

′′ 𝑠2) 𝑚2𝑘
⋆ (𝑠), (33) 

and 𝐵2
(𝑘)

(𝑠) is the polynomial in 𝑠 is given by 

 

𝐵2
(𝑘)(𝑠) = − ∑ 𝐵1

(𝑘)
(𝜚

𝑗
)

3

𝑗=1

( ∏
𝑠 − 𝜚

𝑘

𝜚
𝑗

− 𝜚
𝑘

3

𝑘=1,𝑘≠𝑗

), (34) 

with 𝜚1, 𝜚2, 𝜚3 denoting the three roots of the Lundberg’s equation. 

Proof. The proof of the proposition is provided only for the ruin probability caused type-I claims. Using 

properties of the Laplace transform, taking the Laplace transform on both side in Eq. (31), and isolate 𝜓1
⋆(𝑠), 

we obtain 

 
𝜓1

⋆(𝑠) =
𝒩1(𝑠)

𝒟1(𝑠)
 (35) 

where 

 𝒩1(𝑠) = (𝐶𝜎1
− 𝐶𝜎1

′ 𝑠 + 𝐶𝜎1
′′𝑠2)𝑚1

⋆(𝑠) + (𝐶𝜎2
− 𝐶𝜎2

′ 𝑠 + 𝐶𝜎2
′′𝑠2)𝑚2

⋆(𝑠) 

+(𝐶𝜎1
′ − 𝐶𝜎1

′′𝑠)𝑚1(0) + (𝐶𝜎2
′ − 𝐶𝜎2

′′ 𝑠)𝑚2(0) − 𝐶𝜎1
′′𝑚1

′ (0) − 𝐶𝜎2
′′𝑚2

′ (0) 

− [(𝐶𝜎1
′′𝑓𝑋(0) + 𝐶𝜎2

′′ℎ𝑋(0) + 𝐶𝜎3
′′𝑓𝑌(0) + 𝐶𝜎4

′′ ℎ𝑌(0) + 𝐶𝜓1
′  − 𝐶𝜓1

′′𝑠 + 𝑠2)𝜓1(0)

+ (𝑠 − 𝐶𝜓1
′′)𝜓1

′ (0) + 𝜓1
′′(0)] , (36) 

 𝒟1(𝑠) =  𝐶𝜓1
− 𝐶𝜎1

𝑓𝑋
⋆(𝑠) − 𝐶𝜎2

ℎ𝑋
⋆ (𝑠) − 𝐶𝜎3

𝑓𝑌
⋆(𝑠) − 𝐶𝜎4

ℎ𝑌
⋆ (𝑠) 

+[𝐶𝜎1
′ 𝑓𝑋

⋆(𝑠) + 𝐶𝜎2
′ ℎ𝑋

⋆ (𝑠) + 𝐶𝜎3
′ 𝑓𝑌

⋆(𝑠) + 𝐶𝜎4
′ ℎ𝑌

⋆ (𝑠) − 𝐶𝜓1
′ ]𝑠 

+[𝐶𝜓1
′′ − 𝐶𝜎1

′′𝑓𝑋
⋆(𝑠) − 𝐶𝜎2

′′ℎ𝑋
⋆ (𝑠) − 𝐶𝜎3

′′𝑓𝑌
⋆(𝑠) − 𝐶𝜎4

′′ℎ𝑌
⋆ (𝑠)]𝑠2 − 𝑠3. (37) 

Note that the Lundberg’s Eq. (21) can be written as 𝑐3𝒟1(𝑠) = 0. By means of Proposition 1, the denominator 

of Eq. (35) has three roots 𝜚1, 𝜚2, 𝜚3. Due to the analyticity of the numerator of Eq. (35), it requires that these 

are also roots of the numerator. Futhermore, we define 𝒩1(𝑠) = 𝐵1
(1)(𝑠) + 𝐵2

(1)
(𝑠), such that 𝐵1

(1)(𝑠) is the 

sum of all terms that include 𝑚1
⋆(𝑠) and 𝑚2

⋆(𝑠) and 𝐵2
(1)

(𝑠) is the sum of the remaining terms. It is found that 

𝐵2
(1)

(𝑠) is a polynomial of degree two. Since 𝒩1(𝜚𝑖) = 0, for 𝑖 = 1, 2, 3, it can be written 𝐵2
(1)(𝜚𝑖) =

−𝐵1
(1)(𝜚𝑖). By using the Lagrange interpolation formula (see Definition 5) at the three points 𝜚1, 𝜚2, 𝜚3 we 

obtain Eq. (34). For the Laplace transform of 𝜓2
⋆(𝑠), the derivation follows the same analogy for 𝜓1

⋆(𝑠). This 

completes the proof.                          ∎ 

Thus, by using the linearity property of Laplace transform and Proposition 2, it follows that 𝜓⋆(𝑠) = 𝜓1
⋆(𝑠) +

𝜓2
⋆(𝑠). To revert the solution from the Laplace domain back to the original surplus domain, we observe that 

the resulting expression 𝜓𝑘
⋆(𝑠) for is a rational function or a ratio of polynomials. Consequently, the inversion 

is performed by applying partial fraction decomposition to expand 𝜓𝑘
⋆ (𝑠) into a sum of elementary terms. The 

explicit solution 𝜓𝑘(𝑢) is then obtained by applying the inverse Laplace transform term by term. This inversion 

process is demonstrated explicitly for the case of exponentially distributed claim sizes in Section 3.6. 
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3.5 Analysis of Ruin Probability when 𝒖 = 𝟎 

This section we analyze of ruin probability by considering the case of 𝑢 = 0. The roots of the Lundberg’s 

equation, as discussed in section 3.2, are fundamental to the subsequent analysis. We assume the roots 

𝜚1, 𝜚2, 𝜚3 are all distinct. Let 𝒦 = 𝐶𝜎1
′′ 𝑓𝑋(0) + 𝐶𝜎2

′′ℎ𝑋(0) + 𝐶𝜎3
′′𝑓𝑌(0) + 𝐶𝜎4

′′ℎ𝑌(0). Note that 𝜚1, 𝜚2, and 𝜚3 

are roots of 𝒩1(𝑠) = 𝐵1
(1)(𝑠) + 𝐵2

(1)
(𝑠). From Eq. (36), the following holds 

 (𝒦 + 𝐶𝜓1
′ − 𝐶𝜓1

′′𝜚𝑖 + 𝜚𝑖
2)𝜓1(0) + (𝜚𝑖 − 𝐶𝜓1

′′ )𝜓1
′ (0) + 𝜓1

′′(0) 

= ∑ [(𝐶𝜎𝑗
′ − 𝐶𝜎𝑗

′′ 𝜚𝑖) 𝑚𝑗(0) − 𝐶𝜎𝑗
′′ 𝑚𝑗

′(0) + (𝐶𝜎𝑗
− 𝐶𝜎𝑗

′ 𝜚𝑖 + 𝐶𝜎𝑗
′′𝜚𝑖

2) 𝑚1
⋆(𝜚𝑖)] ,

2

𝑗=1

 
(38) 

for 𝑖 = 1, 2, 3. Let 𝐽(𝜚𝑖) be the right-hand side of Eq. (38). Since the roots 𝜚1, 𝜚2, and 𝜚3 are all distinct, we 

can form a system of equations which is expressed in the following matrix equation 

 

[

(𝒦 + 𝐶𝜓1
′ − 𝐶𝜓1

′′ 𝜚1 + 𝜚1
2) (𝜚1 − 𝐶𝜓1

′′) 1

(𝒦 + 𝐶𝜓1
′ − 𝐶𝜓1

′′ 𝜚2 + 𝜚2
2) (𝜚2 − 𝐶𝜓1

′′) 1

(𝒦 + 𝐶𝜓1
′ − 𝐶𝜓1

′′ 𝜚3 + 𝜚3
2) (𝜚3 − 𝐶𝜓1

′′) 1

] [

𝜓1(0)

𝜓1
′ (0)

𝜓1
′′(0)

] = [

𝐽(𝜚1)
𝐽(𝜚2)
𝐽(𝜚3)

]. (39) 

Based on the Eq. (39), our objective is to determine the value of 𝜓1(0). This can be accomplished using several 

standard methods from linear algebra. One approach is to solve the entire system by finding the inverse of the 

coefficient matrix. Alternatively, Cramér’s rule can be applied to directly compute the value for 𝜓1(0). For 

the 𝜓2(0), the derivation follows the same analogy for 𝜓1(0). From Eq. (9), it follows that 𝜓(0) = 𝜓1(0) +

𝜓2(0). 

3.6 Exponentially Distributed Claims 

This section presents an analytical formula for the probability ruin 𝜓(𝑢). It is further assumed that type-I 

and type-II claim sizes are exponentially distributed, characterized by the c.d.f 𝐹𝑋(𝑥) = 1 − 𝑒−𝛼1𝑥, 𝑓𝑋(𝑥) =

𝛼1𝑒−𝛼1𝑥, the Laplace transform 𝑓𝑋
⋆(𝑠) = 𝛼1(𝛼1 + 𝑠)−1 and the c.d.f 𝐹𝑌(𝑦) = 1 − 𝑒−𝛼2𝑦 , 𝑓𝑌(𝑦) = 𝛼2𝑒−𝛼2𝑦, 

the Laplace transform 𝑓𝑌
⋆(𝑠) = 𝛼2(𝛼2 + 𝑠)−1.  It follows that ℎ𝑋

⋆ (𝑠) = 𝛼1𝑠((2𝛼1 + 𝑠)(𝛼1 + 𝑠))
−1

 and 

ℎ𝑌
⋆ (𝑠) = 𝛼2𝑠((2𝛼2 + 𝑠)(𝛼2 + 𝑠))

−1
. From Eq. (23), we obtain 𝑚1

′ (𝑢) = −𝑓𝑋(𝑢), 𝑚1
⋆(𝑠) = (𝛼1 + 𝑠)−1, 

𝑚2
′ (𝑢) = −ℎ𝑋(𝑢) and 𝑚2

⋆(𝑠) = −𝛼1((2𝛼1 + 𝑠)(𝛼1 + 𝑠))
−1

.  

Proposition 3 Let −𝑅𝑗, for 𝑗 = 1, … , 4, be the distinct roots with 𝑅𝑒(𝑅𝑗) > 0. Then the explicit expression for 

the ruin probability caused type-𝑘 claims 𝜓𝑘(𝑢) for 𝑢 ≥ 0 is given by 

 

𝜓𝑘(𝑢) = ∑ 𝜛𝑘,𝑗𝑒−𝑅𝑢

4

𝑗=1

, (40) 

where 

 

𝜛𝑘,𝑗 = − [ℬ1
(𝑘)

(−𝑅𝑗) + ℬ2
(𝑘)

(−𝑅𝑗)] ∏ (
1

−𝑅𝑗 − 𝜚𝑘
)

3

𝑘=1

∏ (
1

−𝑅𝑗 + 𝑅𝑘
)

4

𝑘=1,𝑘≠𝑗

, (41) 

and 

 ℬ1
(𝑘)(𝑠) + ℬ2

(𝑘)(𝑠) = [𝐵1
(𝑘)(𝑠) + 𝐵2

(𝑘)(𝑠)] (2𝛼1 + 𝑠)(𝛼1 + 𝑠)(2𝛼2 + 𝑠)(𝛼2 + 𝑠). (42) 

Proof. First we substitute 𝑓𝑋
⋆(𝑠), ℎ𝑋

⋆ (𝑠), 𝑓𝑌
⋆(𝑠) and ℎ𝑌

⋆ (𝑠) into Lundberg’s Eq. (21) to obtain an equation that 

is a seventh-degree polynomial. This Lundberg’s equation has three roots, 𝜚𝑖 with 𝑅𝑒(𝜚𝑖) > 0 for 𝑖 = 1, 2, 3, 

and four additional roots, −𝑅𝑗  with 𝑅𝑒(𝑅𝑗) > 0 for 𝑗 = 1, … , 4. Consequently, the Lundberg’s equation can 

be factored as 
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 −𝑐3(𝑠 − 𝜚1)(𝑠 − 𝜚2)(𝑠 − 𝜚3)(𝑠 + 𝑅1)(𝑠 + 𝑅2)(𝑠 + 𝑅3)(𝑠 + 𝑅4) = 0. (43) 

We then define the functions ℓ(𝑠) as follows 

 ℓ(𝑠) = [𝑐−3(−𝜗1(𝑠) − 𝜗2(𝑠))](2𝛼1 + 𝑠)(𝛼1 + 𝑠)(2𝛼2 + 𝑠)(𝛼2 + 𝑠), (44) 

and the functions ℬ1
(𝑘)(𝑠) + ℬ2

(𝑘)(𝑠) in Eq. (42). This gives the Laplace transform of the ruin probability 

caused type-I claims 

 
𝜓1

⋆(𝑠) =
ℬ1

(1)(𝑠) + ℬ2
(1)(𝑠)

ℓ(𝑠)
, (45) 

The denominator of Eq. (45) can be expressed in terms of the roots of the Lundberg equation in Eq. (43). Using 

the Lagrange interpolation formula, the numerator of Eq. (45) can be written as 

 

ℬ1
(1)(𝑠) + ℬ2

(1)(𝑠) = ∑ {[ℬ1
(1)(−𝑅𝑖) + ℬ2

(1)(−𝑅𝑖)] ∏ (
𝑠 − 𝜚𝑘

−𝑅𝑗 − 𝜚𝑘
)

3

𝑘=1

∏ (
𝑠 + 𝑅𝑘

−𝑅𝑗 + 𝑅𝑘
)

4

𝑘=1,𝑘≠𝑗

}

4

𝑖=1

, (46) 

By substituting ℬ1
(1)(𝑠) + ℬ2

(1)(𝑠) in Eq. (46) back into the Eq. (45), several terms cancel out, simplifying the 

expression to 

 

𝜓1
⋆(𝑠) = ∑

𝜛1,𝑗

𝑠 + 𝑅𝑗

4

𝑗=1

, (47) 

where 𝜛𝑘,𝑗 is defined in Eq. (41). Finally, applying the inverse Laplace transform term by term and utilizing 

the linearity property, we obtain the explicit expression for the ruin probability caused by type-I claims in the 

surplus domain 𝜓𝑘(𝑢). The probability ruin caused type-II claims is derived analogously to that of type-I 

claims. Hence, we can obtain the total ruin probability.        ∎ 

To illustrate, a numerical example is provided as follows. 

Example 1. (Case of type-I claims occurring frequently but with a low average claim sizes, and type-II 

claims occurring rarely but with a high average claim sizes) Consider a risk model with two types of claims. 

The claim arrival processes for type-I, 𝑁1(𝑡), and type-II, 𝑁2(𝑡), follow Poisson processes with intensities 𝜆1

= 1.0 and 𝜆2 = 0.2, respectively. The claim sizes for each type are assumed to follow an exponential 

distribution. The type-I claim size, 𝑋, is exponentially distributed with parameter 𝛼1 = 1.0, and the type-II 

claim size, 𝑌, is exponentially distributed with parameter 𝛼2 = 0.2. The dependence structure between the 

claim size and the inter-arrival time for each respective type is modeled by the FGM copula, with dependence 

parameters 𝜃1 and 𝜃2. These parameters are specifically chosen to reflect the distinct risk profiles of the two 

claim types, 𝜆1  > 𝜆2 reflects the higher frequency of type-I claims, while the mean claim sizes 
1

𝛼1
= 1 and 

1

𝛼2
= 5 reflect the higher severity of type-II claims. The premium rate received by the company is 𝑐 = 2.5. 

This value satisfies the solvability condition, as the premium rate exceeds the total expected aggregate claim 

cost per unit time 
𝜆1

𝛼1
+

𝜆2

𝛼2
= 2 < 2.5. To obtain the numerical results, we substitute these parameters into the 

general explicit solution derived in Proposition 3. Specifically, the ruin probability functions presented below 

are calculated using Eq. (40), with the coefficients 𝜛𝑘,𝑗  determined by Eq. (41) and the exponents −𝑅𝑗 derived 

from the roots of the Lundberg’s equation. The analytical expression for the ruin probability, 𝜓(𝑢), will be 

calculated by computing the ruin probabilities caused by claim type-I and claim type-II, and then summing the 

results (derived with python). This is done for the following copula parameter scenarios. The resulting specific 

formulas for each dependence scenario are as follows: 

a. Independent case (𝜃1 = 𝜃2 = 0) 
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 𝜓𝑖𝑛𝑑(𝑢) = 0.0792885558𝑒−0.65934664𝑢  +  0.720685677𝑒−0.06067362𝑢 . (48) 

b. Positive dependence case (𝜃1 = 0.5 and 𝜃2 = 0.5) 

 𝜓𝑝𝑜𝑠(𝑢) = 0.0116759934𝑒−1.89367845𝑢  +  0.0877710888𝑒−0.73066379𝑢   

+0.040477877𝑒−0.35581965𝑢  +  0.564344106𝑒−0.09610876𝑢 . 
(49) 

c. Negative dependence case (𝜃1 = −0.5 and 𝜃2 = −0.5) 

 𝜓𝑝𝑜𝑠(𝑢) = −0.00353898483𝑒−2.09502807𝑢 +  0.0757249995𝑒−0.58228366𝑢   

−0.0330136003𝑒−0.45446869𝑢 + 0.847300244𝑒−0.03276363𝑢 . 
(50) 

d. Hybrid dependence I case (𝜃1 = 0.5 and 𝜃2 = −0.5) 

 𝜓ℎ𝑦𝑏𝐼(𝑢) = 0.00573757401𝑒−1.89322719𝑢  +  0.055817724𝑒−0.70970477𝑢  

−0.0171933897𝑒−0.43949277𝑢  +  0.81192188𝑒−0.03893979𝑢 . 
(51) 

e. Hybrid dependence II case (𝜃1 = −0.5 and 𝜃2 = 0.5) 

 𝜓ℎ𝑦𝑏𝐼𝐼(𝑢) = −0.0077826902𝑒−2.09472779𝑢  +  0.090208067𝑒−0.62769491𝑢   

+0.0468799411𝑒−0.34837961𝑢  +  0.618983132𝑒−0.08792132𝑢 . 
(52) 

The resulting specific formulas for the total ruin probability 𝜓(𝑢) for each dependence scenario are 

presented in Eqs. (48)-(52). It is important to note that each of these total probability functions is the sum of 

the individual ruin probabilities caused by type-I and type-II claims (𝜓(𝑢) = 𝜓1(𝑢) + 𝜓2(𝑢)). While we 

present the aggregate closed form solutions here for brevity, the behaviors of the individual components 

𝜓1(𝑢) and 𝜓2(𝑢) are analyzed and visualized in Figure 2. 

Figure 2. A comparative analysis of ruin probabilities across five dependence scenarios. 
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Figure 2 provides a visual decomposition of the analytical results presented in Eqs. (48)-(52). While the 

equations above quantify the total solvency risk, this figure separates the contribution of each claim type. 

Specifically, the hump observed in the 𝜓2(𝑢) curve corresponds to the specific dominant exponential terms in 

the explicit formula for type-II claims, which differ from the rapidly decaying terms governing type-I claims. 

Consistently across all subplots, the curve for 𝜓1(𝑢) decreases sharply, whereas 𝜓2(𝑢) exhibits a characteristic 

hump and decays much more slowly. This distinct behavior is driven by the fundamental difference in severity. 

type-I claims, being small, are quickly absorbed by the premium income as the initial surplus u increases. In 

contrast, type-II claims are high-severity events. Even with a moderate initial surplus, the risk of a single 

catastrophic claim wiping out the capital remains significant, causing 𝜓2(𝑢) to contribute more heavily to ruin 

at intermediate and high surplus levels. For independent case, The results obtained in this scenario are validated 

against the results found in Example 3.1 by Han et al. [18]. Figure 3 illustrates the significant impact of 

different dependence structures on the ruin probability. The negative dependence scenario consistently yields 

the highest ruin probability, representing the most perilous risk profile. Intuitively, this occurs because negative 

correlation pairs large claim amounts with short inter-arrival times. Consequently, the insurer faces significant 

capital outflows before sufficient premium income has been accumulated to absorb the shock, drastically 

increasing the likelihood of insolvency. Conversely, the positive dependence scenario produces the lowest risk, 

implying the most favorable condition for solvency. This safety arises because large claims are associated with 

longer inter-arrival times. This delay provides the insurer with a crucial recovery period to build up premium 

reserves. This accumulated buffer acts as a financial cushion, making the surplus more resilient when a large 

loss eventually occurs. The independent case serves as an essential benchmark, situated between these 

extremes, highlighting that ignoring correlation structures can lead to a significant misestimation of risk..  
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Table 1. Ruin probability with varying dependence scenario at 𝑢 = 10 

Scenario 𝜓1(𝑢) 𝜓2(𝑢) 𝜓(𝑢) 

Independent 0.05117228 0.34184081 0.39301309 

Positive dependence 0.02621920 0.19084138 0.21706058 

Negative dependence 0.08533234 0.52512682 0.61045916 

Hybrid dependence I 0.05056335 0.49931905 0.54988240 

Hybrid dependence II 0.04832009 0.21023392 0.25855400 

 

 
Figure 3. The effect of different dependence structures on the ruin probability, 𝜓(𝑢), for a given initial 

surplus, 𝑢. 

To substantiate the visual findings with concrete numerical evidence, Table 1 presents the ruin probability 

at a specific surplus point, namely 𝑢 = 10. The data reveals a substantial divergence in risk levels, the ruin 

probability in the negative dependence case (0.610) is nearly three times higher than in the positive dependence 

case (0.217). This magnitude underscores that ignoring dependence structures can lead to severe capital 

underestimation. Furthermore, the hybrid scenarios provide a crucial insight into which claim type drives the 

overall risk. Comparing the two hybrid cases, hybrid I (𝜃1 > 0, 𝜃2 < 0) yields a much higher ruin probability 

(0.550) than hybrid II (𝜃1 < 0, 𝜃_2 > 0) (0.259). This stark difference indicates that the dependence structure 

of type-II claims acts as the dominant factor. Specifically, when type-II claims have a negative dependence (as 

in hybrid I), the risk escalates drastically, regardless of the behavior of type-I claims. Practically, this implies 

that insurers must prioritize modeling the dependence of high-severity claim lines, as misjudging this specific 

correlation poses the greatest threat to solvency. 

The findings from Example 1 align with established literature [8-12], confirming that negative dependence 

poses the greatest threat to solvency while positive dependence offers a protective effect. However, this study 

extends those insights by explicitly isolating the mechanism within a two claim framework. Our analysis 

demonstrates that the total solvency risk is not equally driven by both claim types. Instead, it is 

disproportionately dominated by the dependence structure of the high-severity claims. Consequently, a 



Sandy Salomo Saruan / Indonesian Actuarial Journal  
Vol. 01, No. 02, December (2025) 

 e-ISSN 3110-6463 

111 

 

negative dependence within this specific category amplifies the ruin probability far more drastically than 

similar behavior in type-I claims. 

From an actuarial perspective, these results provide critical decision-making directives. The distinct impact 

of type-II claims implies that insurers cannot rely on aggregate risk models that ignore claim heterogeneity. 

Instead, capital allocation and pricing strategies must explicitly account for the correlation structure of 

catastrophic lines. Specifically, if a negative correlation is detected in high-severity claim lines, actuaries must 

advocate for significantly higher solvency margins or targeted reinsurance coverage to mitigate the elevated 

risk of rapid capital depletion. 

4. CONCLUSIONS 

The insurance surplus process is modeled using a continuous-time risk model with two types of claims and 

FGM copula dependence. In this model, there are two types of claims, named type-I and type-II, with different 

characteristics in terms of frequency and claim severity. The dependence between inter-claim time and claim 

size is modeled with an FGM copula. We derive the integro-differential equation for probability ruin. For 

exponentially distributed claim amounts, an analytic form of the ruin probability is obtained. A numerical 

illustration confirms that the ruin probability decreases as the initial surplus increases and shows that the FGM 

copula dependence influences the ruin probability.  

A key advantage of this two type risk model is its ability to decompose the solvency risk within a mixed 

portfolio. By distinguishing between frequent, small claims (type-I) and rare, high-severity claims (type-II), 

the model reveals that the latter are the primary drivers of ruin, particularly under negative dependence. This 

distinction is critical for insurers managing mixed portfolios, as traditional aggregate models often obscure the 

specific correlation risks associated with high-severity lines. By isolating these components, the derived 

explicit formulas enable actuaries to implement more precise capital allocation and targeted reinsurance 

strategies. This ensures that reserves are not merely based on average aggregate losses, but are specifically 

calibrated to withstand the shocks from high-severity components.  

This study has two primary limitations that should be considered when interpreting the results. First, the 

model assumes that the claim arrival for both types follows a Poisson process. While standard, this assumption 

implies memoryless arrivals, potentially limiting the model’s ability to capture risk contagion or seasonal 

clustering often observed in real world data. Second, the use of the FGM copula limits the analysis to weak 

dependence structures between inter-claim times and claim sizes. Consequently, the derived ruin probabilities 

may underestimate the true solvency risk in scenarios characterized by strong tail dependence, such as during 

major catastrophic events. Based on these limitations, future research could be extended in several specific 

directions. First, to overcome the weak dependence constraint of the FGM copula, future studies should employ 

Archimedean copulas such as Clayton, Gumbel, or Frank copula. These copula families allow for the modeling 

of stronger tail dependence, which is critical for capturing the correlation between extreme events. Second, the 

assumption of exponentially distributed claim sizes could be relaxed to better fit real world data. Extending 

the model to incorporate heavy-tailed distributions (e.g., Pareto or Weibull), particularly for type-II claims, 

would provide a more realistic assessment of solvency risk. Finally, the claim arrival assumption could be 

generalized by replacing the Poisson process with a renewal process (e.g., Erlang or Cox processes) or a 

Hawkes process to capture potential clustering and risk contagion effects. 
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