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Abstract   

This study aims to develop a gross premium model for endowment insurance 

products under a multiple life setting by incorporating various actual cost 
components and applying the Gompertz mortality distribution. The proposed model 

includes acquisition costs at the beginning and end of the first policy year, premium 

collection costs, and annual policy maintenance costs, all of which are calculated 

based on present values of benefits and annuities. Parameter estimation is 

conducted using linear regression with a bounded optimization approach, where 

all parameters are constrained to be strictly positive to reflect realistic conditions 

in insurance practice. The simulation results yield parameter estimates of  𝑎1 =

0,97074,  𝑎2 = 0,912217, 𝛽 = 𝑅𝑝 19.344,46 and 𝛾 = 𝑅𝑝 20.105,23 which are 

considered actuarially reasonable. The high coefficient of determination, 𝑅2 =

98,46%, indicates that the model has an excellent fit to the gross premium data. 

This research demonstrates that an actuarial-based cost formulation combined 

with statistical estimation can serve as an effective and transparent approach in 

determining premiums for endowment life insurance products with more than one 

insured. 
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1. INTRODUCTION 

Death is the danger that all people will eventually encounter. Financial loss may result from this risk, 

particularly if the family's head of household or primary provider passes away. The existence of a Dual Benefit 

Life Insurance product, which is a kind of insurance that offers two types of benefits: the benefit if the insured 

survives until the end of the protection period or dies within the protection period, is one way to reduce this 

financial loss. One type of dual-benefit life insurance is multiple life insurance Multiple life insurance is a 

policy that covers two or more lives, with benefits paid out if one of the insured individuals passes away [1]. 

Whole life multiple life insurance provides a period of coverage as long as all insured individuals are still alive 

or until at least one insured individual reaches the oldest age. In traditional actuarial literature, multiple life 

contracts are considered as independent or mutually exclusive events [2]. 

However, this approach is considered less accurate because, in practice, there is dependence among insured 

individuals, especially in the family context shows that the assumption of independence can lead to bias in 

premium determination, making dependency models such as multivariate copulas important in calculating 

family insurance premiums involving more than two lives. This dependence affects the estimation of the 

probability of living together and the value of the benefits to be paid [3]. In a life insurance policy, there will 

certainly be costs that need to be paid by the insured every month, referred to as the insurance premium. The 

amount of premium that must be paid by the insured is the sum of the pure premium and the loading factor. 

The pure premium is obtained from the expected occurrence of risk, while the loading factor includes other 

costs such as administrative fees, operational costs, and so on. The components of endowment life insurance 

costs consist of initial closing costs, premium collection costs, and maintenance costs [4]. 
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The calculation of pure premiums for dual-purpose multiple life insurance, cost components become an 

important factor that influences the balance between the obligations of the insurance company and affordability 

for policyholders. The main cost components in pure premiums include mortality costs, operational costs, and 

technical reserves that must be met to ensure the sustainability of benefit payments in the future [5]. 

Inaccuracies in estimating these costs can impact the solvency of the insurance company and the risk balance 

within the policy portfolio. Additionally, the complexity of multiple life insurance increases uncertainty in 

calculating the benefit value derived from the combination of survival and death probabilities of more than 

one insured. Therefore, a model that can better represent risk characteristics is needed so that cost components 

can be calculated accurately and in accordance with actuarial principles. 

In the calculation of cost components in dual-purpose life insurance, mortality tables or distributions that 

depict mortality rates, such as Weibull, Inverse-Weibull, and Gompertz, are usually used. The Gompertz 

distribution has become one of the distributions that can be used to predict mortality rates that are more aligned 

with actual rates. This distribution is widely used for studies on mortality and can reflect the increase in 

mortality rates and aging with considerable flexibility, accurately and simply. In its application, the Gompertz 

distribution can be used to estimate the probability of someone surviving and dying, as well as the present 

value of a lifetime annuity [6]. 

The Gompertz distribution, which is one of the mortality models for estimating death rates, is often applied 

in prospective reserve estimation because it can project a more realistic death pattern. This distribution can 

also accurately and simply depict the increase in mortality risk as age increases. With its high flexibility, 

Gompertz is often chosen to produce more accurate reserve estimates because it is highly flexible and effective 

in simulating the processes of aging and mortality. The probability of survival under the Gompertz assumption 

is lower compared to the survival probability data from the 2011 Indonesian Mortality Table. This is because 

the Gompertz approach not only estimates the probability of survival but is also sensitive to interest rate 

changes due to exchange rate fluctuations. In the study, the depreciation of the rupiah against the dollar caused 

an increase in interest rates, which in turn raised the premium value. The research also indicates that not only 

the mortality model plays a role in the accuracy of premium calculations, but external economic factors as well 

[7]. 

Other research also states that the Gamma-Gompertz mortality law is suitable for modeling the mortality 

rate of the population. The mortality rate can later be used in the calculation of premiums and annual gross 

benefit reserves more accurately [8]. Furthermore, the premium for dual-purpose life insurance obtained using 

the Gompertz law is higher than the premium obtained using the de Moivre law [9]. This is because the de 

Moivre law assumes a uniform distribution of mortality probability, meaning the probability of death is spread 

evenly, whereas the Gompertz law describes an exponential increase in the risk of death as age increases. 

Based on the background above, a study is needed on the calculation of cost components in the pure 

premium of multiple life dual-purpose insurance. This research is conducted to maintain the balance between 

the obligations of the insurance company and the affordability for policyholders. This calculation is also 

necessary to ensure that the insurance company can pay future benefits, which impacts the high level of 

solvency and portfolio balance of the company. 

 

2. METHODS 

This research aims to calculate the cost components in the gross premium of a multiple life endowment 

insurance policy by applying a multiple life survival model with an independence assumption, using the 

Gompertz distribution fitted to the Indonesian Mortality Table IV (TMI IV), combined with actuarial present 

value calculations and cost structure analysis. The future lifetimes of multiple insured individuals are modeled 

as continuous random variables whose survival and death probabilities are derived jointly under the assumption 

that each life is independent. The Gompertz distribution is used to represent each individual’s mortality, with 

its parameters estimated by fitting to the Indonesian Mortality Table IV (TMI IV) to reflect actual population 
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mortality patterns. Joint survival probabilities for multiple lives are then obtained as the product of each 

individual’s survival probability. These are used to calculate the present actuarial values for annuities and term 

insurance under the multiple life framework. The gross premium is determined by adding various cost 

components — such as new business costs, premium collection costs, and policy maintenance expenses — to 

the net premium using standard cost loading factors. To ensure valid and realistic estimates for cost 

components, a constrained linear regression model is applied, and its performance is evaluated using the 

coefficient of determination (R²). The methodological flow from fitting mortality data to determining the gross 

premium is shown in the flowchart below, 

 

Figure 1. Flowchart of methodology 

 

2.1 Single Life and Multiple Life Model 

Given that 𝑇(𝑥) is a continuous random variable representing the future lifetime of an individual aged 𝑥  

with 𝑥  being in the interval [0,∞). The death of an individual aged 𝑥  can occur at any time, so the age 

distribution of 𝑥 dan 𝑇(𝑥) are random variables whose death ages are greater than 𝑥 . 𝑇(𝑥) has a distribution 

function, a probability function, and a survival function. 𝐹𝑋(𝑡) states the probability that an individual aged 𝑥  

will die before time  t, 𝑓𝑋(𝑡) is the probability function of 𝑇(𝑥), dan 𝑆𝑋(𝑡) states the probability that an 

individual aged 𝑥  will survive at least until time 𝑡 [5]. The three functions are related as follows: 
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Figure 2. Schematic relationship between 𝑓𝑋(𝑡), 𝐹(𝑥), and 𝑆𝑋(𝑡) 

Then, the survival function and distribution function can also be symbolized as, 

𝐹𝑋(𝑡) = P(𝑇(𝑥) ≤ 𝑡) = 𝑞𝑡 𝑥 (1) 

and 

𝑆𝑋(𝑡) = P(𝑇(𝑥) > 𝑡) = 1 − P(𝑇(𝑥) ≤ 𝑡) = 𝑝𝑡 𝑥 (2) 

Multiple life dual-purpose life insurance is insurance that covers more than one insured person. The 

probability that both individuals (𝑥) and (𝑦) will survive for t years into the future during the term of the 

multiple life dual-purpose life insurance policy is called the multiple life survival probability and is denoted 

as, 

𝑆𝑇(𝑥),𝑇(𝑦)(𝑡1, 𝑡2) = 𝑃({𝑇(𝑥) > 𝑡1} ∩ {𝑇(𝑦) > 𝑡2}}) = 𝑝𝑡 𝑥𝑦 (3) 

Assuming independence between 𝑥 and 𝑦, it can be written as follows [10]: 

𝑝𝑡 𝑥𝑦 = 𝑝𝑡 𝑥 𝑝𝑡 𝑦 (4) 

 

2.2 Gompertz Distribution 

The Gompertz distribution is a distribution that can be used to estimate or calculate the probability of 

someone surviving and dying, as well as the present value of a lifetime annuity. The probability density 

function (PDF) of Gompertz distribution is 

𝑓(𝑥) = 𝐵 𝑐𝑥𝑒
{
−𝐵

𝑙𝑛 𝑐
(𝑐𝑥−1}

, 0 ≤ 𝑥 < 𝜔 (5) 

with B > 0, c > 1, x > 0, through the probability density function, it can be established that the cumulative 

distribution function (CDF) of Gompertz distribution is as follows, 

𝐹(𝑥) = 1 − 𝑒𝑥𝑝 [−
𝐵

𝑙𝑛 𝑐
(𝑐𝑥 − 1)] (6) 

The Gompertz distribution has a survival function that can be written as follows, 

𝑆(𝑥) = 𝑒𝑥𝑝 [−
𝐵

𝑙𝑛 𝑐
(𝑐𝑥 − 1)] (7) 

So that a person’s mortality rate function 𝜇(𝑥), 𝑝𝑥,𝑡 𝑞𝑥 𝑡 can be formed as follows [11], 

𝜇𝑥 = 𝐵𝑐𝑥  (8) 

𝑝𝑥 = 𝑒𝑥𝑝 [−
𝐵𝑐𝑥

𝑙𝑛 𝑐
(𝑐𝑡 − 1)]𝑡  (9) 

𝑞𝑥 = 1 − 𝑒𝑥𝑝 [−
𝐵𝑐𝑥

𝑙𝑛 𝑐
(𝑐𝑡 − 1)]𝑡  (10) 

with, 𝐵 is the probability of death or failure orccuring; 𝑐 is the specific growth rate of failure or death 
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Figure 3. The plots of 𝜇(𝑥), 𝑝𝑥𝑡 , 𝑞𝑥𝑡  of gompertz distribution 

 

2.3 Annuity and Insurance Benefit 

The present value is the amount of the initial investment that grows to (1 + 𝑖) at the end of the first 

period. The present value can also be referred to as the discount factor denoted by 𝑣 [10]. 

𝑣 =
1

(1+𝑖)
 (11) 

The present actuarial value of the annuity for dual-purpose multiple life insurance with an annual payment 

of 1 unit at the beginning of the period can be expressed as, 

𝑎̈𝑥𝑦:𝑛|̅̅ ̅ = ∑ 𝑣𝑘( 𝑝𝑡 𝑥𝑦)
𝑛−1
𝑘=0  (12) 

Whereas, the present actuarial value of the annuity for a dual-purpose multiple life insurance with an 

annual payment of 1 unit at the end of the period can be expressed as [12], 

𝑎𝑥𝑦:𝑛|̅̅ ̅ = ∑ 𝑣𝑘( 𝑝𝑡 𝑥𝑦)
𝑛
𝑘=1  (13) 

The equation for the actuarial present value in multiple life dual-purpose life insurance can be seen as the 

same as in term life insurance for n years. The actuarial present value for n-year dual-purpose life insurance is 

as follows [1]: 

𝐴𝑥𝑦:𝑛|̅̅ ̅ = ∑ 𝑣𝑘( 𝑝𝑡 𝑥𝑦) ( 𝑞(𝑥+1)(𝑦+1))
𝑛
𝑘=0  (14) 

 

2.4 Premium Calculation 

The amount of premium received from policyholders is called the gross premium. The gross premium is 

greater than the net premium, and the difference between the gross premium and the net premium is called the 

Loading Factor (Cost). The loading factor is usually assumed to be an additional percentage of the net premium. 

In practice, the context of the loading factor received by life insurance companies is used for the administrative 

maintenance costs of policyholders, and it also serves as a source of interest income used for reserve purposes. 

The formulas for pure premium and gross premium for payment at the beginning of the year are denoted 

as follows: 

𝑃𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅ =
𝐴𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅

𝑎̈𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅
 (15) 

and 

𝑃⃗ 𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅ =
𝑃𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅

1−𝑒
 (16) 

𝑒 is percentage of loading factor [1].  

Cost components in premium payments 

There are various costs that may arise in the calculation of gross premium, including: 

1. New closing costs (𝛼1, 𝛼2). 

New closing costs consist of: insurance supervisor commission fees, field service fees, policy issuance 

fees, advertising/reclame costs, and sales promotion. 
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For  𝛼1 : Costs incurred at the beginning of the year, for  𝛼2: Costs incurred at the end of the year 

2. Premium collection costs (𝛽). 

Premium collection costs exist throughout the premium coverage period, with the amount of coverage 

denoted as 𝛽 

3. Maintenance costs consist of: Electricity, water, building, and so on, applicable at the beginning of 

each policy year during the coverage period (𝛾) [13]. 

From the above cost components, a gross premium model can be formed as follows: 

𝑃⃗ 𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅ =
(𝑆×𝐴𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅ )+a1𝑃𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅ +a2𝑃𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅ 𝑣+𝛽𝑎𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅ +γ𝑎̈𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅

𝑎̈𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅
  (17) 

 

2.5 Linear Regression 

Linear regression is one of the statistical approaches used to model the relationship between one 

dependent variable 𝑌  and one or more independent variables 𝑋1, 𝑋2, … , 𝑋𝑘 . This model assumes that the 

relationship between the variables is linear, which is expressed in the form of a general equation: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯+ 𝛽𝑘𝑋𝑘 + 𝜀 (18) 

with:  

𝑌 is dependent variable (respons), 

𝑋1, 𝑋2, … , 𝑋𝑘 is independent variable (predictor), 

𝛽0 is intercept (𝑌-axis intersection), 

𝛽1 is the regression coefficient that represents the influence of 𝑋𝑖, 

𝜀 is error that follows a normal distribution [14]. 

 

In practice, not all coefficients in a regression model can take arbitrary values. For example, in certain 

applications, regression coefficients need to be constrained, such as only taking positive values or being within 

a specific range. For that, a constrained optimization approach is used. One commonly used technique is 

bounded optimization, which allows for the search for the best parameters within certain limits. 

Optimization problems with constraints can be formulated as: 

min 𝑓(𝜃) with conditions 𝜃𝑖
𝑙𝑜𝑤𝑒𝑟 ≤ 𝜃𝑖 ≤ 𝜃𝑖

𝑢𝑝𝑝𝑒𝑟
 (19) 

with 

𝜃 is a vector of regression parameters (for example 𝛽1, 𝛽2, … , 𝛽𝑘) 

𝑓(𝜃)is the objective function that needs to be minimized, such as squared error or other functions [15]. 

 

The evaluation of linear regression results can be done using the coefficient of determination, commonly 

known by the symbol 𝑅2.The Value of 𝑅2 measures how well the regression model explains the variation in 

the response data 𝑌. Mathematically, 𝑅2 is defined as: 

𝑅2 = 1 −
∑ (𝑌𝑖−𝑌̂𝑖)

2𝑛
𝑖=1

∑ (𝑌𝑖−𝑌̅𝑖)
2𝑛

𝑖=1

 (20) 

with 

𝑌𝑖 is the actual value from the data 

𝑌̂𝑖 is the predicted value from the model 

𝑌̅𝑖 is the average of all values 𝑌 [16]. 

 

3. RESULT AND DISCUSSION 

3.1 Transforming the Indonesian Mortality Table IV with the Gompertz Distribution 

The Gompertz distribution used in this study is derived from the adjustment of the Indonesian Mortality 

Table IV. Before estimating the parameters of the Gompertz distribution, the mortality probability (𝑞𝑥) in the 
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TMI is first transformed into the form 𝑌𝑖 = ln (ln (
1

(1−𝑞𝑥)
)). The results of the transformation are presented in 

the following table, 

Table 1.  Transformation of TMI IV mortality rates 

Age Male Female Y_Male Y_Female 

0 0,00524 0,00266 -5,248808 -5,928098 

1 0,00053 0,00041 -7,542368 -7,799148 

2 0,00042 0,00031 -7,775046 -8,078783 

3 0,00034 0,00024 -7,986395 -8,334752 

4 0,00029 0,00021 -8,145485 -8,468298 

5 0,00026 0,0002 -8,254699 -8,517093 

:     

107 0,49429 0,46604 -0,383031 -0,466116 

108 0,52467 0,50427 -0,296056 -0,354215 

109 0,55733 0,54477 -0.204652 -0,239587 

110 0,59244 0,58702 -0,108067 -0,122895 

 

The results of the transformation will then be analyzed using regression analysis in Microsoft Excel. The 

regression model is formed between the dependent variable (mortality rate) and the independent variable (age). 

The results of the regression analysis for each gender are obtained as follows: 

1. The Regression Analysis of the Indonesian Mortality Table IV for males obtained an 𝑅2  value of 

0,956132292 or 95,61% indicating a large variation in a dependent variable (mortality rate). The R 

Square value indicates that the regression model is very good at predicting the results of the 

observational data. Regression Equation: 

 𝑌𝐿 = −9,200495355 + 0,079163477𝑋 

2. The Regression Analysis of the Indonesian Mortality Table IV for females obtained an 𝑅2 value of 

0,957690174 or 95,76% indicating a large variation in a dependent variable (mortality rate). The R 

Square value indicates that the regression model is very good at predicting the results of the 

observational data. Regression Equation: 

𝑌𝐿 = −9,509513076 + 0,079063545𝑋 

 

3.2 Estimation of Gompertz Distribution Parameters 

Estimation of the Gompertz distribution parameters can be performed using the equation  

ln (ln (
1

(1 − 𝑞𝑥)
)) = 𝑥 ln 𝑐 + ln (

𝐵

ln 𝑐
) (𝑐 − 1)  

By using the above equation on the linear regression equation, it is obtained, 

a. Estimation of Gompertz distribution parameters for males 

𝑌𝐿 = −9,200495355 + 0,079163477𝑋 

ln (ln (
1

(1 − 𝑞𝑥)
)) = 𝑥 ln 𝑐 + ln (

𝐵

ln 𝑐
) (𝑐 − 1)  

then, 

𝛽1 = ln 𝑐 ⟷ 0,079163477 = ln 𝑐 ⟷𝑐 = 1,082375 
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𝛽0 = ln (
𝐵

ln 𝑐
) (𝑐 − 1) ⟷ −9,200495355 = ln(

𝐵

0,07916347
(1,082375 − 1)) ↔ 𝐵 = 0,0000970521 

 

b. Estimation of Gompertz distribution parameters for females 

𝑌𝐿 = −9,509513076 + 0,079063545𝑋 

ln (ln (
1

(1 − 𝑞𝑥)
)) = 𝑥 ln 𝑐 + ln (

𝐵

ln 𝑐
) (𝑐 − 1)  

then, 

𝛽1 = ln 𝑐 ⟷ 0,079063545 = ln 𝑐 ⟷𝑐 = 1,082264 

𝛽0 = ln (
𝐵

ln 𝑐
) (𝑐 − 1) ⟷ −9,509513076 = ln(

𝐵

0,079063545
(1,082264 − 1)) ↔ 𝐵 = 0,0000712586 

Based on the parameters that have been obtained, then can be used to find the probability of death using the 

equation, 

• The male’s probability of death 

𝑞𝑥 = 1 − exp [−
(0,0000970521)(1,082375)𝑥

ln(1,082375)
(1,082375 − 1)] 

• The female’s probability of death 

𝑞𝑥 = 1 − exp [−
(0,0000712586)(1,082264)𝑥

ln(1,082264)
(1,082264 − 1)] 

 

 

Figure 4. The probability of death and survival for men and women 

 

The plots show that the probability of death (𝑞𝑥) for both males and females increases exponentially with 

age, reflecting the typical aging pattern captured by the Gompertz distribution fitted to the given parameters. 

At younger ages, the probability of death is close to zero and the probability of survival (𝑝𝑥) remains near one, 

indicating high survival likelihood in early life. As age approaches the higher range (around age 80 and above), 

the probability of death rises steeply while the survival probability declines rapidly toward zero, demonstrating 

the increasing mortality risk in old age. Comparing the male and female curves, it is visible that, with these 

parameters, females tend to have slightly lower death probabilities and higher survival probabilities at each 

age, which aligns with general demographic trends showing females having higher life expectancy than males. 
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Thus, the following table was obtained: 

Table 2. Adjustment of TMI IV mortality probability with gompertz distribution 

Age 
Male 

(TMI IV) 

Female 

(TMI IV) 

Male 

(Gompertz) 

Female 

(Gompertz) 

0 0,00524 0,00266 0,000101 0,000074 

1 0,00053 0,00041 0,00011 0,000081 

2 0,00042 0,00031 0,000119 0,000087 

:     

109 0,55733 0,54477 0,43277 0,337381 

110 0,59244 0,58702 0,458654 0,359439 

111 1 1 1 1 

 

 

3.3 Simulation of Cost Component Calculation 

This research was conducted with the assumption that the profile of the policyholders consists of male 

and female couples, with males (𝑥) aged 25-35 years and females (𝑦) aged 21-31 years. The life insurance 

program followed is a dual-purpose life insurance with a term of 10 years and a sum insured (𝑆) of Rp 

5.000.000. The interest rate follows the BI-rate of 5.5%. Additionally, a loading factor (𝑒) of 25% is assumed. 

The probabilities of death and survival are properties for calculating the present value of annuities paid at the 

beginning of the year, annuities paid at the end of the year, and the present value of multiple life dual-purpose 

life insurance. 

As an example of a complete calculation with a male (𝑥 = 25) and female (𝑦 = 21): 

1. The present actuarial value of an annuity for a dual-purpose life insurance multiple life policy with an 

annual payment of 1 unit at the beginning of the period can be expressed as, 

𝑎̈25,21:10|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∑ (
1

1,055
)
𝑘

( 𝑝𝑘 25 𝑝𝑘 21) = 8,061775900

9

𝑘=0

  

2. The present actuarial value of an annuity for a dual-purpose life insurance multiple life with an annual 

payment of 1 unit at the end of the period can be expressed as, 

𝑎25,21:10|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∑ (
1

1,055
)
𝑘

( 𝑝𝑘 25 𝑝𝑘 21) = 7,665692612

10

𝑘=1

  

3. The actuarial present value for a two-benefit life insurance policy for years is as follows: 

𝐴25,21:10|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∑(
1

1,055
)
𝑘

( 𝑝𝑘 25 𝑝𝑘 21)( 𝑞(26)(22)) =  0.586052000 

10

𝑘=0

  

4. Next, the net premium and gross premium were obtained as follows: 

𝑃25,21:10|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 5.000.000 ×
𝐴25,21:10|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑎̈25,21:10|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
= 363.476,00  

 

and 

𝑃⃗ 25,21:10|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
𝑃25,21:10|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

1 − 25%
= 484.634,66  

 

The calculations above were conducted for all couples with males aged 26-35 years and females aged 22-

31 years, as shown in the table below: 
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Table 3. Gross premium value, net premium, annuity, and present value of insurance benefit 

𝑥 𝑦 𝑃𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅  𝑃⃗ 𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅  𝐴𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅  𝑎𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅  𝑎̈𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅  

25 21 363.476,00 484.634,66 0,586052000 7,665692612 8,061775900 

26 22 365.043,61 486.724,81 0,588304522 7,661104274 8,058003310 

27 23 365.374,54 487.166,06 0,588539714 7,656142581 8,053923332 

28 24 365.732,78 487.643,71 0,588794025 7,650777548 8,049511157 

29 25 366.120,59 488.160,78 0,589068989 7,644976848 8,044740071 

30 26 366.540,39 488.720,52 0,589366257 7,638705640 8,039581266 

31 27 366.994,86 489.326,48 0,589687608 7,631926391 8,034003688 

32 28 367.486,84 489.982,46 0,590034958 7,624598681 8,027973873 

33 29 368.019,46 490.692,62 0,590410370 7,616678997 8,021455775 

34 30 368.596,08 491.461,44 0,590816065 7,608120525 8,014410580 

35 31 369.220,34 492.293,79 0,591254428 7,598872918 8,006796512 

 

After calculating the actuarial components such as the present value of insurance benefits, the present value of 

annual premiums, the discount factor, and the life annuity, a mathematical model can be constructed to 

illustrate the gross premium structure of life insurance products. This model considers the contributions from 

various cost components, both the benefits paid and the additional costs charged into the premium, resulting 

in the following gross premium formula: 

𝑃⃗ 𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅ =
(𝑆 × 𝐴𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅ ) + a1𝑃𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅ + a2𝑃𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅ 𝑣 + 𝛽𝑎𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅ + γ𝑎̈𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅

𝑎̈𝑥𝑦:𝑛|̅̅ ̅̅ ̅̅ ̅̅
 

This model is then estimated using a linear regression approach with bounded optimization through the 

Python programming language. The optimization process is conducted with the constraint that all parameters 

must be positive and cannot be zero, to maintain the consistency of actuarial practice logic. The simulation 

results show that the obtained coefficient values are 𝑎1 = 0,97074, 𝑎2 = 0,912217, 𝛽 = 19.344,46, 𝛾 =

20.105,23. The interpretation of these results shows that the component of new closure costs (𝑎1, 𝑎2) relative 

to the pure premium approaches full value (around 90%–97%). For example, for a couple where the man is 25 

years old and the woman is 21 years old, the acquisition cost paid at the beginning of year 𝑎1  is 

0,97074 × 𝑃25,21:10|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0,97074 × Rp 363.476,00 = Rp 352.840,692 and the acquisition costs are paid at 

the end of the year 𝑎2  is 0,912217 × 𝑃25,21:10|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ×
1

1,055
= 0,912217 × Rp 363.476,00 ×

1

1,055
=

Rp 314.283,399. Whereas, the premium collection cost (𝛽) is Rp 19.344,46 and the maintenance cost, which 

includes electricity, water, building, and so on, applicable at the beginning of each policy year during the 

coverage period (𝛾) is Rp 20.105,23. 

Then, the simulation conducted resulted in a coefficient of determination 𝑅2 of 98,46%, indicating that 

this model has a very high goodness of fit. This means that more than 98% of the variation in the gross premium 

data can be explained by the model. This indicates that this formulation approach is not only mathematically 

valid but also highly effective in representing the actual cost components in the calculation of the gross 

premium for term life insurance products. 
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4. CONCLUSIONS 

Based on the research results, it can be concluded that the probability of death for males and females was 

successfully estimated by fitting the Gompertz distribution to the Indonesian Mortality Table IV, producing 

mortality parameters that align with actual population patterns. The gross premium model formed in this study 

includes detailed actuarial cost components: an initial acquisition cost (𝑎1 =  0,9707); an end-of-first-year 

acquisition cost (𝑎2 =  0,912217) ; a premium collection cost (𝛽 = Rp 19.344,46) ; and an annual 

maintenance cost (𝛾 = Rp Rp 20.105,23). All parameters were estimated using a linear regression approach 

with bounded optimization and yielded positive, logically consistent results in accordance with actuarial 

practice. The simulation using Python produced a coefficient of determination of 𝑅2 = 98,46%, indicating 

that the model has excellent predictive power and can represent the cost structure accurately in calculating 

premiums for multiple life endowment insurance products. This study highlights the advantage of combining 

mortality modeling with explicit cost component estimation. However, it is limited by its use of a single 

mortality table and the assumption of independence between insured lives. Future research is recommended to 

test alternative mortality models, incorporate possible dependencies among lives, and validate the approach 

with larger and more diverse datasets to enhance the model’s applicability and accuracy. 
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