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Abstract
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of the stock index, trying to capture market movement with reduced risk. To solve
this problem, we use maximum independent set, a concept from graph theory. As a
case study we consider IDX80 in the year 2024.
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1. INTRODUCTION

In Indonesia, the popularity of stocks as an investment vehicle has risen substantially among investors [1],
evidenced by a consistent increase in the number of stock investors over recent years. According to the
Indonesian Capital Market Statistics published by PT Kustodian Sentral Efek Indonesia (KSEI) in December
2023, the investor base in stocks and other securities expanded by 210% from 2020 to 2023, with an 18.87%
increase occurring within 2023 alone. IDXS80 is one of several stock indices maintained by PT Bursa Efek
Indonesia (BEI). IDX80 measures the stock price performance of 80 stocks listed in IDX Composite with
relatively large market capitalization, high liquidity, and good fundamentals, weighted by free float adjusted
market capitalization capped at 9% [2].

The large number of different stocks from a number of different sectors may be overwhelming for investors
to analyze. There is an incentive to identify a small number of “key stocks” that can capture market movement.
The following is an intuitive method to achieve this goal:

1. Start with a stock index, say IDX80.

2. Choose a smaller subset S = {sy, ..., s,,} of the constituent stocks.

3. Measure how well can S capture market movement. Technically, this can be done by choosing weights
Wy, ..., Wy, so that the porfolio return Rp = wy Ry + --- + w,, R, approximates the index’s performance
as close as possible (similar to a linearly regressing index return to the assets’ return). Suppose that
the closeness is measured by sum of squared error (SSE).

Ideally, we want to find S such that the SSE is as small as possible (or at least small enough). In principle,
this can be done by brute force, trying out all possible subsets of the index. However, this is not practical: if
the index has m constituent stocks, there are 2™ — 2 possibility for a non-empty subset that is smaller than the
entire index. This number is prohibitively large. For example, IDX80 lists m = 80 stocks, and the number of
subsets to be checked is 28° — 2 = 1,208,925,819,614,629,174,706,174. This number can be reduced by
screening the stocks with respect to certain measures of performance (e.g. mean daily return). But the total
number of possible subsets can still get very large. The methods we use in this paper will help to significantly
reduce the number of subsets/combinations to check.
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Instead of brute force, we will use graph theory. Price fluctuations among stocks have complicated
relationships [3], considering the stock market as a complex system [4]. Graph theory provides an approach to
complex systems with many interacting units [5]. Recent studies have applied graph theory to the stock market
by constructing “market graphs”, representing a financial network [6]. Peralta [7] argued that optimal portfolio
weights are negatively correlated to “centrality” in the financial network. Various notions of “centrality” can
be leveraged to create new optimization models. Rafsanjani and Rahimnezhad [8] used closeness centrality,
betweenness centrality, and eigenvector centrality to optimize a modified Sharpe ratio. Berouaga et al. [9] used
minimum spanning tree (MST) to identify key relationships in the financial network. These studies indicate
that many aspects of graph theory are increasingly viewed as useful tools in the investigation of financial
markets.

Rational investors pursue the maximization of returns while simultaneously minimizing risks [10]. A viable
strategy to reduce risk entails the formation of a diversified stock portfolio, which involves allocating capital
across multiple equities to mitigate potential losses in one stock through gains in others [11]. As indicated in
[12], stock correlations critically influence the efficacy of diversification in risk management. A high
correlation between stocks can cause portfolio risk to remain high despite the number of stocks being held,
while a low correlation can reduce portfolio risk. Thus it is important that our selection of stocks is weakly
correlated with each other. Prastiwi and Septyanto [13] used graph theory and vertex coloring to produce
several sets at once with that property.

We will use the concept of Maximum Independent Set (MIS). Previous research by Hidaka et al. [14] used
a quantum-inspired parallel algorithm to find MIS in order to produce a correlation-diversified portfolio. In
this paper, we will use a classical recursive algorithm to list all the MIS. While [14] used equal weights and
inverse volatility weights, in this paper we use SSE minimizing weights and Sharpe ratio maximizing weights.

The main purpose of this research is to described a method to select dominant stocks in the stock market
and to allocate capital to maximize investment efficiency without short position.

2. METHODS
2.1 Data and Processing

For case study we use the stock price data of IDX80 for the year 2024, collected from Yahoo Finance. The
index is revised quarterly, and we choose only the stocks that are consistently listed in IDX80 throughout the
four quarters of 2024. Further screening is done to remove stocks whose mean daily return is lower than the
risk free rate.

2.2 Assumptions and Notations

The return of each stock is assumed to be a random variable. The observed return of a stock is computed
from adjusted close price of a stock, as a simple return

Rth — Pi,f_Pi,f—l (1)

Pit1
where P; ; is the adjusted closing price of stock i at time ¢, and R; ; is its return.

Given n assets (e.g. stocks), a portfolio is a collection of weights wT = (wy, ..., w,,) with the assumption
that wy, ..., w, = 0 signifying long-only position, and w; + --- + w,, = 1 signifying that all capital is invested
in the risky assets. Portfolio return is a random variable Rp = wy Ry + -+ + wy, R,, with expected return

Up = E(RP) = WlE(Rl) + -+ WnE(Rn) = WTM (2)
where p = (E (Ry),..,E (Rn))T is the vector of expected returns of individual stocks. Portfolio variance is

Var(Rp) = X1, X7, wiijov(Ri,Rj) =wlQw 3)
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n . . . . .
where Q = [Cov(R;, Rj)]i,jzl is the covariance matrix. We take the standard deviation op = \/Var(Rp) as a
measure of the stock’s volatility or risk.

In portfolio optimization, asset returns are usually assumed normal, so that portfolio return is also normal
and hence completely described by just two parameters: mean and variance. In this paper we do not assume
normality. Thus, variance is just a partial measure of risk and our assertions about risk shall be understood to
refer to only the standard deviation.

Sharpe ratio measures the amount of (excess) return gained for every unit of risk taken. Mathematically,

_ ERp)-rf uTw—rf (4)
op JwTow

where 75 is the risk-free rate. The risk-free rate is derived from the average BI 7 Days Repo Rate during the

SR

observation period, taken as nominal and converted to daily effective return. A positive Sharpe ratio implies
that on average the portfolio performs better than a risk-free obligation.

2.3 Graphs

We use standard definition and notation of graph theory, such as contained in [15]. A graph is often used
to represent a relationship between objects. The objects are represented by vertices/nodes, and a pair of related
objects are represented by drawing an edge/line between the pair. For example, Figure 1 below may represent
the relationship between 9 stocks. Supposedly, an edge/line between two stocks indicate that their returns are
“highly” correlated. The meaning of “high” is of course relative, exceeding some predetermined treshold. In
Figure 1, the central stock’s return is highly correlated to the other 8 stocks, but the 8 stocks are weakly
correlated among themselves (as there are no edges between the 8 stocks).

Figure 1. A simple example of graph

2.4 Correlation Graph
We are going to construct a graph from stock return data (only capital gain, ignoring dividend) as follows:

1. Create one vertex for every stock.

2. Compute the correlation matrix, then delete (turn into 0) the diagonal entries.

3. Delete (turn into 0) all correlations below a certain treshold. In this paper, the treshold is the average
of pairwise correlation between the stocks’ returns.

4. If the (i, ) th entry in the matrix is non-zero, draw an edge between the i’th and j’th stocks.

Thus, an edge in the correlation graph represents similarity or high correlation.
2.5 Independent Domination

If two vertices are connected by an edge, we say that they are adjacent or neighbours. The degree of a vertex
is the number of its neighbours. A set of vertices is independent if its members are pairwise non-adjacent. A
set of vertices is dominating if every vertex not in the set is adjacent to at least one member of the set. A set
of vertices is independent dominating if it is both an independent and dominating set. For example, the set
consisting of 8 “white” vertices in Figure 1 is independent dominating. In the same figure, the set consisting
of only 1 “red” vertex is also independent dominating. These concepts were studied in depth in [16].
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Proposition A: If an independent set is maximal (we cannot add any new member without destroying
independence) then that set is also dominating.

Proof: Suppose that S is a maximal independent set. If S is not dominating, then by definition there is a vertex
v outside of S that does not have any neighbour in S. Then S U {v} is also independent, contradicting the
maximality assumption on S. Therefore, S must be dominating. QED

Finding a maximal independent set can be assisted by a related concept. An independent set is maximum
if its size (the number of its members) is as large as possible. Note that maximal and maximum independent
sets are different concepts. For example, the set consisting of 1 “red” vertex in Figure 1 is maximal because if
we add any of the white vertices then the set will have adjacent vertices. That set with one member is clearly
not maximum, because there is a larger independent set (in terms of size), namely the set consisting of 8
“white” vertices. So, a maximal independent set is not necessarily maximum. However, the converse is true.

Proposition B: If an independent set is maximum (we cannot find any other independent set with larger
size) then that set is maximal.

Proof: Suppose that S is a maximum independent set. If S is not maximal, then by definition we can add a
vertex v outside of S such that S U {v} is independent. However, S U {v} has one more member compared to
S, contradicting the assumption that S is maximum. Therefore, S must be maximal. QED

The point of Propositions A and B is that we can find an independent dominating set (our main goal) by
finding a maximum independent set. The latter is easier to find, and we shall describe a recursive algorithm
for that task. The algorithm is based on the following.

Proposition C: If a vertex is a member of an independent set, then all neighbours of that vertex are excluded
from the set.

Proof: Suppose that S is an independent set and v is a member of S. Let w be any neighbour of v. If w is also
a member of S, then S will have two adjacent member, contradicting independence. Therefore, w cannot be a
member of S. QED

Recursive Algorithm to Find Maximum Independent Set (MIS):

1. Ifa graph does not have any vertex, define its MIS as the empty set.
2. [If a graph does not have any edge, define its MIS as the entire vertex-set.
3. Suppose that a graph G = (V, E) has at least one edge.
a. Choose a vertex v with the largest degree.
Create a new graph G from G by removing v.
Compute S; = MIS(G,).
Create a new graph G, from G by removing v and all of its neighbours.
Compute S, = {v} U MIS(G,).
f. Choose the largest among S; and S, as MIS(G). Output the result as MIS(G).

o a0 o

In general the maximum independent set is not unique, in fact the number of maximum independent sets can
be very large, so the above algorithm may give different results each time. However, the algorithm can be
slightly modified to produce the complete list of all maximum independent sets. This algorithm is implemented
in R using the ivs command in the igraph library.

2.6 Weight Allocation: Minimizing Sum of Squared Error

Given several candidates (MIS) we choose the best one by measuring how good they can replicate index
return. Suppose that we are considering an independent dominating set of stocks S = {sy, ..., s,} (in the
correlation graph) from a stock index (in this case, IDX80). Let stock s; have weight w; and return R; ; at time
t. The portfolio return at time t is Rp; = wy Ry + -+ wpR;, ¢. Suppose that the index return at time ¢ is 7.
We seek to minimize the sum of squared error (SSE):
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2
SSE(Wy, .o, wy) = XE1 (1 — Rp ) (5)
where T is the number of days of observation, with wy, ..., w, = 0 and wy + -+ + w,, = 1. We transform this
to a standard quadratic form, so that numerical solution can be found with solve.QP command in quadprog
library in R.
Proposition D: The SSE is minimized by a weight vector w = (w; -+ w,)T satisfying the following
optimization problem

min (—r"Rw + >w"R"Rw) 6)
where 7 = (r; -+ 71;)7 is the vector of the index’s daily return and
Rii Rz1 ' Rpa
N )
Riz Rar =+ Rng

is the matrix where every column consists of a stock’s daily return, subject to the constraints 17w = 1 (where
1 is the all 1’s column vector) and w = 0.

Proof: Note that the error function (4) can be written as a matrix product SSE = e e where
—Rps Rp1 WiRy 1 + -+ WpRp o
- RP 2 RP 2 _|WiRiz o+ WRp

_RPT

=r — Rw
WiR1 7+ WpRy o
Therefore,
SSE=efe=@r—-—Rw)'(r—Rw) =" —w'R"))(r —Rw) =r"r —r"Rw —w'R"r + w"RTRw

Note that wT RTr is a number, so it is equal to its own transpose w! RTr = (W' RTr)T = rTRw. Thus,
1
SSE=1Tr—2r"Rw+ w/'RTRw =7rTr + 2 (—rTRw + EWTRTRW)
Since 77 is constant, minimizing SSE is equivalent to minimizing —17 Rw + %WTRTRW. QED

2.7 Weight Allocation: Maximizing Sharpe Ratio

After selecting the best MIS by the previous allocation method, we optimize the portfolio performance by
maximizing Sharpe ratio. Given a vector of stocks’ expected return g and covariance matrix Q, we seek a
weight vector w € R" satisfying the following constrained optimization problem

Tw—r
max SR(w) = max% (8)
1"Tw=1, w=>0

where 1 = (1,1, ...,1)T and 0 = (0,0, ...,0)T are n X 1 vectors.

Exact solution to (8) is difficult to obtain analytically due to the non-negativity constraint. Similar to the
previous section, we transform this to a quadratic optimization.

Proposition E: Consider the problem of finding (x,k) € R™ X R (so x € R™ is a vector and k € R is a
number) satisfying the following optimization problem

min xTQx )

(u-r1)'x=1 1Tx—k=0, x>0, k0.
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If (x, ko) is an optimal solution of (9), then w, = z_o is a optimal solution of (8).
0

Proof. Suppose that (xg, k) is an optimal solution to (9). It can be checked that w, = i—o belongs to the feasible
0

set of (8), namely 17w, = 1 and w, > 0. Moreover,

T

B X r
Wy —T ko T T — 1ok Tor — 11T x 1) x

SR(W0)=” 0 J_ % _ KXo T Trko KXoy 0_(’" f) 0o

1
wiaw, Jx_Qx_ Khex,  [xtex  [sex  [xiex
ko * ko

Let w be any vector in the feasible set for (8), so 17w =1 and w > 0. If SR(w) < 0 then SR(w,) > 0 >
SR(w). Now assume SR(w) > 0, so that " w — r¢ > 0. Define

. 1 _ 1 _ 1
' (n- rfl)Tw p'w—r 1w pTw—1s

T

k >0

and x := kw. It can be checked that (x, k) is in the feasible set of (9):
. (u—rfl)Tx = (u—rfl)Tkw= k(u—rfl)Tw= 1,
o 1"x=1Tkw=k1Tw =k.

1

. 1 . . . .
Similar to SR(wy) = ————, we also have SR(w) = . Since (x, ko) is an optimal solution to (9), we
( 0) W ( ) W ( 0 0) P ( )

have x]Qx, < xTQx so SR(w,) = SR(w), proving that SR(w,) is maximum. QED
In general, the constraints of (9) are not always satisfied. For example, when g — 771 has some negative

. . . . T
entries (i.e. when some stocks have negative Sharpe ratios), the first constraint (u—rfl) x =1 may
necessitate some x; to be negative. However, when g — 771 > 0 i.e. when all entries of u — 771 are positive,

this problem is avoided. This provides another reason for removing stocks with negative Sharpe ratio at the
screening process.

3. RESULT AND DISCUSSION

There are 71 stocks consistently listed in IDX80 in all four quarters of 2024. Of these 71 stocks, 28 stocks
have positive Sharpe ratio. Figure 2 shows the correlation graph of the 28 stocks. An edge indicates “high”
(above average) correlation. From this figure we can already glean some insights. For example, HEAL is
directly connected to very few other stocks (only 3), so HEAL is highly correlated to only a small number of
other stocks; therefore, HEAL can safely be included in most portfolio without significant risk. On the other
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hand, PGAS is directly connected to many stocks (20 out of 27 other stocks), so inclusion of PGAS in a
portfolio will likely increase the portfolio’s risk.

Figure 2. Correlation graph of 28 stocks in IDX80 2024 with positive Sharpe ratio

After running the modified recursive algorithm in Section 2.5, we discovered 4 different maximum
independent sets, each consisting of 7 members:

Set 1: ADRO, BRIS, BRMS, HEAL, MAPA, PNLF, SIDO
Set 2: ADRO, BRMS, ESSA, HEAL, JPFA, MAPA, PNLF
Set 3: ADRO, BRMS, HEAL, JPFA, MAPA, MYOR, SIDO
Set 4: ADRO, BRMS, HEAL, JPFA, MAPA, PNLF, SIDO,
The following table shows the minimum SSE for each set, together with the corresponding weights.

Table 1. Minimizing SSE for each set

. . Minimum
Weight Allocation SSE

Set 1 ADRO BRIS BRMS HEAL MAPA PNLF SIDO 0.0205
11.31% 18.92% 9.37% 13.39% 12.21% 12.69% 22.11% '

Set 2 ADRO BRMS ESSA HEAL JPFA MAPA PNLF 0.0252
12.68% 10.45% 11.64% 16.46% 17.90% 16.98% 13.90% '

Set 3 ADRO BRMS HEAL JPFA MAPA MYOR SIDO 0.0202
8.32% 7.80% 11.42% 14.19% 9.96% 27.29% 21.02% '

Set 4 ADRO BRMS HEAL JPFA MAPA PNLF SIDO 0.0229
10.35% 8.56% 13.64% 16.71% 13.06% 13.22% 24.45% '

Among the four sets, Set 3 has the smallest minimum SSE. Therefore, we choose Set 3 as the constituents
of our portfolio. Its members have weak correlation among themselves, and any stock outside the set is highly
correlated with at least one member. Set 3 serves as a well diversified group of stocks that can capture market
movement. The following figure compares Set 3’s return (with the SSE-minimizing weights) with index return.
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The two returns have a positive correlation of 0.5423. The SSE-minimum portfolio has a mean daily return of
0.15%, a cumulative 1-year return of 42.50%, standard deviation of 0.98%, and Sharpe ratio of 0.1319.

0.02-

0.00-

Daily Return

-0.02-

Dec 2024

Oct 2024

Jun 2024

Feb 2024

Apr 2024 Aug 2024

Figure 3. Comparing IDX80 return (solid red line) with Set 3 return (dashed blue line)

Finally, we recalculate the weights to maximize Sharpe ratio. The maximum Sharpe ratio portfolio has a
mean daily return of 0.24%, a cumulative 1-year return of 72.56%, standard deviation of 1.30%, and Sharpe
ratio of 0.1648.

Table 2. Maximum Sharpe ratio weights of Set 3

Weight Allocation
Set 3 ADRO BRMS HEAL JPFA MAPA MYOR SIDO
19.80% 20.36% 4.12% 28.02% 14.79% 7.75% 5.16%

4. CONCLUSIONS

In this paper, we have considered the stocks from IDX80, filtered for consistency in the inclusion during
all quarters of 2024, and positive Sharpe ratio. We obtained an independent dominating set of 7 stocks, namely
ADRO, BRMS, HEAL, JPFA, MAPA, MYOR, SIDO. These stocks have weak correlation among themselves,
but every other stock is highly correlated with at least one of them. We calculated the weights to minimize
SSE, and we have observed graphically and numerically that the 7 stocks can replicate the index performance
quite well. Then we recalculated the weights to maximize Sharpe ratio instead.

The methods of this paper can be generalized to other assets, not just stocks. The graph theoretic technique
of maximum independent set (MIS) can be applied to any other “similarity” network, not just based on
correlation.
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