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Abstract   

In this paper we consider the problem of efficiently finding a (small) set of stocks 

taken from an index that can replicate the index performance. Furthermore, we add 

the requirement that the set’s returns have weak correlation with each other. Such 

a selection of stocks may be useful for investors who want to simplify their analysis 

of the stock index, trying to capture market movement with reduced risk. To solve 

this problem, we use maximum independent set, a concept from graph theory. As a 

case study we consider IDX80 in the year 2024. 
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1. INTRODUCTION 

In Indonesia, the popularity of stocks as an investment vehicle has risen substantially among investors [1], 

evidenced by a consistent increase in the number of stock investors over recent years. According to the 

Indonesian Capital Market Statistics published by PT Kustodian Sentral Efek Indonesia (KSEI) in December 

2023, the investor base in stocks and other securities expanded by 210% from 2020 to 2023, with an 18.87% 

increase occurring within 2023 alone. IDX80 is one of several stock indices maintained by PT Bursa Efek 

Indonesia (BEI). IDX80 measures the stock price performance of 80 stocks listed in IDX Composite with 

relatively large market capitalization, high liquidity, and good fundamentals, weighted by free float adjusted 

market capitalization capped at 9% [2]. 

The large number of different stocks from a number of different sectors may be overwhelming for investors 

to analyze. There is an incentive to identify a small number of “key stocks” that can capture market movement. 

The following is an intuitive method to achieve this goal: 

1. Start with a stock index, say IDX80. 

2. Choose a smaller subset 𝑆 = {𝑠1, … , 𝑠𝑛} of the constituent stocks. 

3. Measure how well can 𝑆 capture market movement. Technically, this can be done by choosing weights 

𝑤1, … , 𝑤𝑛 so that the porfolio return 𝑅𝑃 = 𝑤1𝑅1 + ⋯ + 𝑤𝑛𝑅𝑛  approximates the index’s performance 

as close as possible (similar to a linearly regressing index return to the assets’ return). Suppose that 

the closeness is measured by sum of squared error (SSE). 

Ideally, we want to find 𝑆 such that the SSE is as small as possible (or at least small enough). In principle, 

this can be done by brute force, trying out all possible subsets of the index. However, this is not practical: if 

the index has 𝑚 constituent stocks, there are 2𝑚 − 2 possibility for a non-empty subset that is smaller than the 

entire index. This number is prohibitively large. For example, IDX80 lists 𝑚 = 80 stocks, and the number of 

subsets to be checked is 280 − 2 = 1,208,925,819,614,629,174,706,174. This number can be reduced by 

screening the stocks with respect to certain measures of performance (e.g. mean daily return). But the total 

number of possible subsets can still get very large. The methods we use in this paper will help to significantly 

reduce the number of subsets/combinations to check. 
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Instead of brute force, we will use graph theory. Price fluctuations among stocks have complicated 

relationships [3], considering the stock market as a complex system [4]. Graph theory provides an approach to 

complex systems with many interacting units [5]. Recent studies have applied graph theory to the stock market 

by constructing “market graphs”, representing a financial network [6]. Peralta [7] argued that optimal portfolio 

weights are negatively correlated to “centrality” in the financial network. Various notions of “centrality” can 

be leveraged to create new optimization models. Rafsanjani and Rahimnezhad [8] used closeness centrality, 

betweenness centrality, and eigenvector centrality to optimize a modified Sharpe ratio. Berouaga et al. [9] used 

minimum spanning tree (MST) to identify key relationships in the financial network. These studies indicate 

that many aspects of graph theory are increasingly viewed as useful tools in the investigation of financial 

markets. 

Rational investors pursue the maximization of returns while simultaneously minimizing risks [10]. A viable 

strategy to reduce risk entails the formation of a diversified stock portfolio, which involves allocating capital 

across multiple equities to mitigate potential losses in one stock through gains in others [11]. As indicated in 

[12], stock correlations critically influence the efficacy of diversification in risk management. A high 

correlation between stocks can cause portfolio risk to remain high despite the number of stocks being held, 

while a low correlation can reduce portfolio risk. Thus it is important that our selection of stocks is weakly 

correlated with each other. Prastiwi and Septyanto [13] used graph theory and vertex coloring to produce 

several sets at once with that property. 

We will use the concept of Maximum Independent Set (MIS). Previous research by Hidaka et al. [14] used 

a quantum-inspired parallel algorithm to find MIS in order to produce a correlation-diversified portfolio. In 

this paper, we will use a classical recursive algorithm to list all the MIS. While [14] used equal weights and 

inverse volatility weights, in this paper we use SSE minimizing weights and Sharpe ratio maximizing weights. 

The main purpose of this research is to described a method to select dominant stocks in the stock market 

and to allocate capital to maximize investment efficiency without short position. 

 

2. METHODS 

2.1 Data and Processing 

For case study we use the stock price data of IDX80 for the year 2024, collected from Yahoo Finance. The 

index is revised quarterly, and we choose only the stocks that are consistently listed in IDX80 throughout the 

four quarters of 2024. Further screening is done to remove stocks whose mean daily return is lower than the 

risk free rate. 

2.2 Assumptions and Notations 

The return of each stock is assumed to be a random variable. The observed return of a stock is computed 

from adjusted close price of a stock, as a simple return 

𝑅𝑖,𝑡 =
𝑃𝑖,𝑡−𝑃𝑖,𝑡−1

𝑃𝑖,𝑡−1
      (1) 

where 𝑃𝑖,𝑡 is the adjusted closing price of stock 𝑖 at time 𝑡, and 𝑅𝑖,𝑡  is its return. 

Given 𝑛 assets (e.g. stocks), a portfolio is a collection of weights 𝒘𝑇 = (𝑤1, … , 𝑤𝑛) with the assumption 

that 𝑤1 , … , 𝑤𝑛 ≥ 0 signifying long-only position, and 𝑤1 + ⋯ + 𝑤𝑛 = 1 signifying that all capital is invested 

in the risky assets. Portfolio return is a random variable 𝑅𝑃 = 𝑤1𝑅1 + ⋯ + 𝑤𝑛𝑅𝑛 with expected return 

𝜇𝑃 = 𝐸(𝑅𝑃) = 𝑤1𝐸(𝑅1) + ⋯ + 𝑤𝑛𝐸(𝑅𝑛) = 𝒘𝑇𝝁   (2) 

where 𝝁 = (𝐸(𝑅1), … , 𝐸(𝑅𝑛))
𝑇

 is the vector of expected returns of individual stocks. Portfolio variance is 

𝑉𝑎𝑟(𝑅𝑃) = ∑ ∑ 𝑤𝑖𝑤𝑗𝐶𝑜𝑣(𝑅𝑖 , 𝑅𝑗)𝑛
𝑗=1

𝑛
𝑖=1 = 𝒘𝑇𝑸𝒘   (3) 
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where 𝑸 = [𝐶𝑜𝑣(𝑅𝑖 , 𝑅𝑗)]
𝑖,𝑗=1

𝑛
 is the covariance matrix. We take the standard deviation 𝜎𝑃 = √𝑉𝑎𝑟(𝑅𝑃) as a 

measure of the stock’s volatility or risk. 

In portfolio optimization, asset returns are usually assumed normal, so that portfolio return is also normal 

and hence completely described by just two parameters: mean and variance. In this paper we do not assume 

normality. Thus, variance is just a partial measure of risk and our assertions about risk shall be understood to 

refer to only the standard deviation. 

Sharpe ratio measures the amount of (excess) return gained for every unit of risk taken. Mathematically, 

𝑆𝑅 =
𝐸(𝑅𝑃)−𝑟𝑓

𝜎𝑃
=

𝝁𝑇𝒘−𝑟𝑓

√𝒘𝑇𝑸𝒘
     (4) 

where 𝑟𝑓 is the risk-free rate. The risk-free rate is derived from the average BI 7 Days Repo Rate during the 

observation period, taken as nominal and converted to daily effective return. A positive Sharpe ratio implies 

that on average the portfolio performs better than a risk-free obligation. 

2.3 Graphs 

We use standard definition and notation of graph theory, such as contained in [15]. A graph is often used 

to represent a relationship between objects. The objects are represented by vertices/nodes, and a pair of related 

objects are represented by drawing an edge/line between the pair. For example, Figure 1 below may represent 

the relationship between 9 stocks. Supposedly, an edge/line between two stocks indicate that their returns are 

“highly” correlated. The meaning of “high” is of course relative, exceeding some predetermined treshold. In 

Figure 1, the central stock’s return is highly correlated to the other 8 stocks, but the 8 stocks are weakly 

correlated among themselves (as there are no edges between the 8 stocks). 

 

Figure 1. A simple example of graph 

2.4 Correlation Graph 

We are going to construct a graph from stock return data (only capital gain, ignoring dividend) as follows: 

1. Create one vertex for every stock. 

2. Compute the correlation matrix, then delete (turn into 0) the diagonal entries. 

3. Delete (turn into 0) all correlations below a certain treshold. In this paper, the treshold is the average 

of pairwise correlation between the stocks’ returns. 

4. If the (𝑖, 𝑗)’th entry in the matrix is non-zero, draw an edge between the 𝑖’th and 𝑗’th stocks. 

Thus, an edge in the correlation graph represents similarity or high correlation. 

2.5 Independent Domination 

If two vertices are connected by an edge, we say that they are adjacent or neighbours. The degree of a vertex 

is the number of its neighbours. A set of vertices is independent if its members are pairwise non-adjacent. A 

set of vertices is dominating if every vertex not in the set is adjacent to at least one member of the set. A set 

of vertices is independent dominating if it is both an independent and dominating set. For example, the set 

consisting of 8 “white” vertices in Figure 1 is independent dominating. In the same figure, the set consisting 

of only 1 “red” vertex is also independent dominating. These concepts were studied in depth in [16]. 
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Proposition A: If an independent set is maximal (we cannot add any new member without destroying 

independence) then that set is also dominating. 

Proof: Suppose that 𝑆 is a maximal independent set. If 𝑆 is not dominating, then by definition there is a vertex 

𝑣 outside of 𝑆 that does not have any neighbour in 𝑆. Then 𝑆 ∪ {𝑣} is also independent, contradicting the 

maximality assumption on 𝑆. Therefore, 𝑆 must be dominating. QED 

Finding a maximal independent set can be assisted by a related concept. An independent set is maximum 

if its size (the number of its members) is as large as possible. Note that maximal and maximum independent 

sets are different concepts. For example, the set consisting of 1 “red” vertex in Figure 1 is maximal because if 

we add any of the white vertices then the set will have adjacent vertices. That set with one member is clearly 

not maximum, because there is a larger independent set (in terms of size), namely the set consisting of 8 

“white” vertices. So, a maximal independent set is not necessarily maximum. However, the converse is true. 

Proposition B: If an independent set is maximum (we cannot find any other independent set with larger 

size) then that set is maximal. 

Proof: Suppose that 𝑆 is a maximum independent set. If 𝑆 is not maximal, then by definition we can add a 

vertex 𝑣 outside of 𝑆 such that 𝑆 ∪ {𝑣} is independent. However, 𝑆 ∪ {𝑣} has one more member compared to 

𝑆, contradicting the assumption that 𝑆 is maximum. Therefore, 𝑆 must be maximal. QED 

The point of Propositions A and B is that we can find an independent dominating set (our main goal) by 

finding a maximum independent set. The latter is easier to find, and we shall describe a recursive algorithm 

for that task. The algorithm is based on the following. 

Proposition C: If a vertex is a member of an independent set, then all neighbours of that vertex are excluded 

from the set. 

Proof: Suppose that 𝑆 is an independent set and 𝑣 is a member of 𝑆. Let 𝑤 be any neighbour of 𝑣. If 𝑤 is also 

a member of 𝑆, then 𝑆 will have two adjacent member, contradicting independence. Therefore, 𝑤 cannot be a 

member of 𝑆. QED 

Recursive Algorithm to Find Maximum Independent Set (MIS): 

1. If a graph does not have any vertex, define its MIS as the empty set. 

2. If a graph does not have any edge, define its MIS as the entire vertex-set. 

3. Suppose that a graph 𝐺 = (𝑉, 𝐸) has at least one edge. 

a. Choose a vertex 𝑣 with the largest degree. 

b. Create a new graph 𝐺1 from 𝐺 by removing 𝑣. 

c. Compute 𝑆1 = MIS(𝐺1). 

d. Create a new graph 𝐺2 from 𝐺 by removing 𝑣 and all of its neighbours. 

e. Compute 𝑆2 = {𝑣} ∪ MIS(𝐺2). 

f. Choose the largest among 𝑆1 and 𝑆2 as MIS(𝐺). Output the result as MIS(𝐺). 

In general the maximum independent set is not unique, in fact the number of maximum independent sets can 

be very large, so the above algorithm may give different results each time. However, the algorithm can be 

slightly modified to produce the complete list of all maximum independent sets. This algorithm is implemented 

in R using the ivs command in the igraph library. 

2.6 Weight Allocation: Minimizing Sum of Squared Error 

Given several candidates (MIS) we choose the best one by measuring how good they can replicate index 

return. Suppose that we are considering an independent dominating set of stocks 𝑆 = {𝑠1, … , 𝑠𝑛} (in the 

correlation graph) from a stock index (in this case, IDX80). Let stock 𝑠𝑖 have weight 𝑤𝑖 and return 𝑅𝑖,𝑡 at time 

𝑡. The portfolio return at time 𝑡 is 𝑅𝑃,𝑡 = 𝑤1𝑅1,𝑡 + ⋯ + 𝑤𝑛𝑅𝑛,𝑡. Suppose that the index return at time 𝑡 is 𝑟𝑡. 

We seek to minimize the sum of squared error (SSE): 
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𝑆𝑆𝐸(𝑤1, … , 𝑤𝑛) = ∑ (𝑟𝑡 − 𝑅𝑃,𝑡)
2𝜏

𝑡=1     (5) 

where 𝜏 is the number of days of observation, with 𝑤1 , … , 𝑤𝑛 ≥ 0 and 𝑤1 + ⋯ + 𝑤𝑛 = 1. We transform this 

to a standard quadratic form, so that numerical solution can be found with solve.QP command in quadprog 

library in R. 

Proposition D: The SSE is minimized by a weight vector 𝒘 = (𝑤1  ⋯  𝑤𝑛)𝑇 satisfying the following 

optimization problem 

min (−𝒓𝑇𝑹𝒘 +
1

2
𝒘𝑇𝑹𝑇𝑹𝒘)     (6) 

where 𝒓 = (𝑟1  ⋯   𝑟𝜏)𝑇 is the vector of the index’s daily return and 

𝑹 = [

𝑅1,1 𝑅2,1 ⋯ 𝑅𝑛,1

𝑅1,2 𝑅2,2 ⋯ 𝑅𝑛,2

⋮ ⋮ ⋱ ⋮
𝑅1,𝜏 𝑅2,𝜏 ⋯ 𝑅𝑛,𝜏

]     (7) 

is the matrix where every column consists of a stock’s daily return, subject to the constraints 𝟏𝑇𝒘 = 1 (where 

𝟏 is the all 1’s column vector) and 𝒘 ≥ 0. 

Proof: Note that the error function (4) can be written as a matrix product SSE = 𝒆𝑇𝒆 where 

𝒆 = [

𝑟1 − 𝑅𝑃,1

𝑟2 − 𝑅𝑃,2

⋮
𝑟𝜏 − 𝑅𝑃,𝜏

] = [

𝑟1

𝑟2

⋮
𝑟𝜏

] − [

𝑅𝑃,1

𝑅𝑃,2

⋮
𝑅𝑃,𝜏

] = 𝒓 − [

𝑤1𝑅1,1 + ⋯ + 𝑤𝑛𝑅𝑛,1

𝑤1𝑅1,2 + ⋯ + 𝑤𝑛𝑅𝑛,2

⋮
𝑤1𝑅1,𝜏 + ⋯ 𝑤𝑛𝑅𝑛,𝜏

] = 𝒓 − 𝑹𝒘 

Therefore, 

SSE = 𝒆𝑇𝒆 = (𝒓 − 𝑹𝒘)𝑇(𝒓 − 𝑹𝒘) = (𝒓𝑇 − 𝒘𝑇𝑹𝑇)(𝒓 − 𝑹𝒘) = 𝒓𝑇𝒓 − 𝒓𝑇𝑹𝒘 − 𝒘𝑇𝑹𝑇𝒓 + 𝒘𝑇𝑹𝑇𝑹𝒘 

Note that 𝒘𝑇𝑹𝑇𝒓 is a number, so it is equal to its own transpose 𝒘𝑇𝑹𝑇𝒓 = (𝒘𝑇𝑹𝑇𝒓)𝑇 = 𝒓𝑇𝑹𝒘. Thus, 

SSE = 𝒓𝑇𝒓 − 2𝒓𝑇𝑹𝒘 + 𝒘𝑇𝑹𝑇𝑹𝒘 = 𝒓𝑇𝒓 + 2 (−𝒓𝑇𝑹𝒘 +
1

2
𝒘𝑇𝑹𝑇𝑹𝒘) 

Since 𝒓𝑇𝒓 is constant, minimizing SSE is equivalent to minimizing −𝒓𝑇𝑹𝒘 +
1

2
𝒘𝑇𝑹𝑇𝑹𝒘. QED 

2.7 Weight Allocation: Maximizing Sharpe Ratio 

After selecting the best MIS by the previous allocation method, we optimize the portfolio performance by 

maximizing Sharpe ratio. Given a vector of stocks’ expected return 𝝁 and covariance matrix 𝑸, we seek a 

weight vector 𝒘 ∈ ℝ𝒏 satisfying the following constrained optimization problem 

max 𝑆𝑅(𝒘) = max
𝝁𝑇𝒘−𝑟𝑓

√𝒘𝑇𝑸𝒘
     (8) 

𝟏𝑇𝒘 = 1, 𝒘 ≥ 𝟎 

where 𝟏 = (1,1, … ,1)𝑇 and 𝟎 = (0,0, … ,0)𝑇  are 𝑛 × 1 vectors. 

Exact solution to (8) is difficult to obtain analytically due to the non-negativity constraint. Similar to the 

previous section, we transform this to a quadratic optimization. 

Proposition E: Consider the problem of finding (𝒙, 𝑘) ∈ ℝ𝑛 × ℝ (so 𝒙 ∈ ℝ𝑛  is a vector and 𝑘 ∈ ℝ is a 

number) satisfying the following optimization problem 

min 𝒙𝑇𝑸𝒙      (9) 

(𝝁 − 𝑟𝑓𝟏)
𝑇

𝒙 = 1, 𝟏𝑇𝒙 − 𝑘 = 0, 𝒙 ≥ 0, 𝑘 ≥ 0. 
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If (𝒙0, 𝑘0) is an optimal solution of (9), then 𝒘0 =
𝒙0

𝑘0
 is a optimal solution of (8). 

Proof. Suppose that (𝒙0, 𝑘0) is an optimal solution to (9). It can be checked that 𝒘0 =
𝑥0

𝑘0
 belongs to the feasible 

set of (8), namely 𝟏𝑇𝒘0 = 1 and 𝒘0 ≥ 0. Moreover, 

𝑆𝑅(𝒘0) =
𝝁𝑇𝒘𝟎 − 𝑟𝑓

√𝒘0
𝑇𝑸𝒘0

=

𝝁𝑇𝒙𝟎
𝑘0

− 𝑟𝑓

√
𝒙0

𝑇

𝑘0
𝑸

𝒙0

𝑘0

=
𝝁𝑇𝒙0 − 𝑟𝑓𝑘0

√𝒙0
𝑇𝑸𝒙0

=
𝝁𝑇𝒙0 − 𝑟𝑓𝟏𝑇𝒙0

√𝒙0
𝑇𝑸𝒙0

=
(𝝁 − 𝑟𝑓𝟏)

𝑇
𝒙0

√𝒙0
𝑇𝑸𝒙0

=
1

√𝒙0
𝑇𝑸𝒙0

 

Let 𝒘 be any vector in the feasible set for (8), so 𝟏𝑇𝒘 = 1 and 𝒘 ≥ 0. If 𝑆𝑅(𝒘) ≤ 0 then 𝑆𝑅(𝒘0) > 0 ≥

𝑆𝑅(𝒘). Now assume 𝑆𝑅(𝒘) > 0, so that 𝝁𝑇𝒘 − 𝑟𝑓 > 0. Define 

𝑘 ≔
1

(𝝁 − 𝑟𝑓𝟏)
𝑇

𝒘
=

1

𝝁𝑇𝒘 − 𝑟𝑓𝟏𝑇𝒘
=

1

𝝁𝑇𝒘 − 𝑟𝑓
> 0 

and 𝒙 ≔ 𝑘𝒘. It can be checked that (𝒙, 𝑘) is in the feasible set of (9): 

• (𝝁 − 𝑟𝑓𝟏)
𝑇

𝒙 = (𝝁 − 𝑟𝑓𝟏)
𝑇

𝑘𝒘 = 𝑘(𝝁 − 𝑟𝑓𝟏)
𝑇

𝒘 = 1, 

• 𝟏𝑇𝒙 = 𝟏𝑇𝑘𝒘 = 𝑘𝟏𝑇𝒘 = 𝑘. 

Similar to 𝑆𝑅(𝒘0) =
1

√𝒙0
𝑇𝑸𝒙0

, we also have 𝑆𝑅(𝒘) =
1

√𝒙𝑇𝑸𝒙
. Since (𝒙0, 𝑘0) is an optimal solution to (9), we 

have 𝒙0
𝑇𝑸𝒙0 ≤ 𝒙𝑇𝑸𝒙 so 𝑆𝑅(𝒘0) ≥ 𝑆𝑅(𝒘), proving that 𝑆𝑅(𝒘0) is maximum. QED 

In general, the constraints of (9) are not always satisfied. For example, when 𝝁 − 𝑟𝑓𝟏 has some negative 

entries (i.e. when some stocks have negative Sharpe ratios), the first constraint (𝝁 − 𝑟𝑓𝟏)
𝑇

𝒙 = 1 may 

necessitate some 𝑥𝑖 to be negative. However, when 𝝁 − 𝑟𝑓𝟏 > 0 i.e. when all entries of 𝝁 − 𝑟𝑓𝟏 are positive, 

this problem is avoided. This provides another reason for removing stocks with negative Sharpe ratio at the 

screening process. 

 

3. RESULT AND DISCUSSION 

There are 71 stocks consistently listed in IDX80 in all four quarters of 2024. Of these 71 stocks, 28 stocks 

have positive Sharpe ratio. Figure 2 shows the correlation graph of the 28 stocks. An edge indicates “high” 

(above average) correlation. From this figure we can already glean some insights. For example, HEAL is 

directly connected to very few other stocks (only 3), so HEAL is highly correlated to only a small number of 

other stocks; therefore, HEAL can safely be included in most portfolio without significant risk. On the other 
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hand, PGAS is directly connected to many stocks (20 out of 27 other stocks), so inclusion of PGAS in a 

portfolio will likely increase the portfolio’s risk. 

 

Figure 2. Correlation graph of 28 stocks in IDX80 2024 with positive Sharpe ratio 

After running the modified recursive algorithm in Section 2.5, we discovered 4 different maximum 

independent sets, each consisting of 7 members: 

Set 1: ADRO, BRIS, BRMS, HEAL, MAPA, PNLF, SIDO 

Set 2: ADRO, BRMS, ESSA, HEAL, JPFA, MAPA, PNLF 

Set 3: ADRO, BRMS, HEAL, JPFA, MAPA, MYOR, SIDO 

Set 4: ADRO, BRMS, HEAL, JPFA, MAPA, PNLF, SIDO, 

The following table shows the minimum SSE for each set, together with the corresponding weights. 

Table 1. Minimizing SSE for each set 

Weight Allocation 
Minimum 

SSE 

Set 1 
ADRO 

11.31% 

BRIS 

18.92% 

BRMS 

9.37% 

HEAL 

13.39% 

MAPA 

12.21% 

PNLF 

12.69% 

SIDO 

22.11% 
0.0205 

Set 2 
ADRO 

12.68% 

BRMS 

10.45% 

ESSA 

11.64% 

HEAL 

16.46% 

JPFA 

17.90% 

MAPA 

16.98% 

PNLF 

13.90% 
0.0252 

Set 3 
ADRO 

8.32% 

BRMS 

7.80% 

HEAL 

11.42% 

JPFA 

14.19% 

MAPA 

9.96% 

MYOR 

27.29% 

SIDO 

21.02% 
0.0202 

Set 4 
ADRO 
10.35% 

BRMS 
8.56% 

HEAL 
13.64% 

JPFA 
16.71% 

MAPA 
13.06% 

PNLF 
13.22% 

SIDO 
24.45% 

0.0229 

Among the four sets, Set 3 has the smallest minimum SSE. Therefore, we choose Set 3 as the constituents 

of our portfolio. Its members have weak correlation among themselves, and any stock outside the set is highly 

correlated with at least one member. Set 3 serves as a well diversified group of stocks that can capture market 

movement. The following figure compares Set 3’s return (with the SSE-minimizing weights) with index return. 
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The two returns have a positive correlation of 0.5423. The SSE-minimum portfolio has a mean daily return of 

0.15%, a cumulative 1-year return of 42.50%, standard deviation of 0.98%, and Sharpe ratio of 0.1319. 

 

Figure 3. Comparing IDX80 return (solid red line) with Set 3 return (dashed blue line) 

Finally, we recalculate the weights to maximize Sharpe ratio. The maximum Sharpe ratio portfolio has a 

mean daily return of 0.24%, a cumulative 1-year return of 72.56%, standard deviation of 1.30%, and Sharpe 

ratio of 0.1648. 

Table 2. Maximum Sharpe ratio weights of Set 3 

Weight Allocation 

Set 3 
ADRO 

19.80% 

BRMS 

20.36% 

HEAL 

4.12% 

JPFA 

28.02% 

MAPA 

14.79% 

MYOR 

7.75% 

SIDO 

5.16% 

 

4. CONCLUSIONS 

In this paper, we have considered the stocks from IDX80, filtered for consistency in the inclusion during 

all quarters of 2024, and positive Sharpe ratio. We obtained an independent dominating set of 7 stocks, namely 

ADRO, BRMS, HEAL, JPFA, MAPA, MYOR, SIDO. These stocks have weak correlation among themselves, 

but every other stock is highly correlated with at least one of them. We calculated the weights to minimize 

SSE, and we have observed graphically and numerically that the 7 stocks can replicate the index performance 

quite well. Then we recalculated the weights to maximize Sharpe ratio instead. 

The methods of this paper can be generalized to other assets, not just stocks. The graph theoretic technique 

of maximum independent set (MIS) can be applied to any other “similarity” network, not just based on 

correlation. 
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