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Abstract   

Indonesia's position along the Pacific Ring of Fire makes it highly vulnerable to 

catastrophic earthquakes, creating significant financial exposure for insurers 

through simultaneous surges in life and health insurance claims. This study 

develops a comprehensive valuation model for catastrophe reinsurance contracts 

using advanced statistical techniques to assess extreme risks and their 

interdependencies. The model integrates three key approaches: (1) the Peaks Over 

Threshold (POT) method with Generalized Pareto Distribution to analyze extreme 

losses from deaths and injuries, (2) copula theory (specifically Gumbel copula, 

demonstrating superior fit for upper-tail dependence) to capture dependency 
structures between deaths and injuries, and (3) Monte Carlo simulations to project 

future event frequencies and financial impacts. Utilizing Indonesian seismic data 

from 1979 to 2025, while excluding extreme outlier events, reinsurance premiums 

are estimated as the expected present value of potential claims, employing the 

Fundamental Theorem of Asset Pricing. Applying realistic assumptions—including 

a Rp15 billion retention limit for the primary insurer, average claims of Rp500 

million per life and Rp15 million per injury, and coverage for 5% and 7% of the 

population for life and health policies respectively, alongside a 5.75% discount 

rate (BI rate 2025) through 10,000 Monte Carlo simulations—a single reinsurance 

premium of Rp17,395,932,554 is calculated. These results demonstrate how 

advanced statistical methods can effectively quantify catastrophe risk transfer, 
providing insurers with an actuarially sound pricing framework for managing low-

frequency, high-severity earthquake exposures. However, a limitation of this study 

includes the exclusion of the 2004 mega-disaster, which may lead to an 

underestimation of worst-case scenarios, and the use of fixed assumptions for 

insurance coverage and claim values, which may not fully reflect real-world 

variability. Despite these limitations, this approach offers a valuable framework 

for managing earthquake-related risks in Indonesia’s reinsurance market. 
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1. INTRODUCTION 

Indonesia, positioned directly along the volatile Pacific Ring of Fire, is one of the most seismically active 

regions globally. This vulnerability stems from its unique geographical location at the intersection of several 

major tectonic plates, including the Asian, Australian, and Pacific Plates. The constant movement of these 

plates results in an alarmingly high frequency of earthquakes, which consistently inflict substantial loss of life, 

widespread property damage, and significant economic disruption across the archipelago. These seismic events 

pose profound and multifaceted risks to both businesses and individuals, extending beyond immediate physical 

destruction to contribute to long-term financial challenges [1]. 

In the aftermath of catastrophic earthquakes, a profound and immediate financial strain is placed upon the 

insurance sector. A significant surge in insurance claims inevitably occurs, encompassing various types of 

coverage. Crucially, this includes a substantial increase in life insurance payouts for earthquake-related deaths, 

alongside health insurance claims for the injured, and property damage claims. For insurers offering diverse 

coverage types, managing the sheer volume and cumulative cost of these claims can severely strain financial 
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resources, often leading to substantial losses. This financial pressure can escalate to the point of bankruptcy, 

particularly when traditional catastrophe models, often built on limited historical data, fail to accurately 

estimate the true extent of the risks [2]. Consequently, insurers may find themselves critically overexposed, 

unable to manage the aggregated cost of claims during large-scale disasters, thus jeopardizing their solvency 

and their ability to fulfill policyholder obligations. 

To mitigate the severe financial impact of such large-scale disasters, insurance companies widely employ 

reinsurance. This critical mechanism involves transferring a portion of the underwriting risk to another insurer, 

thereby significantly reducing the primary insurer's exposure to catastrophic claims. Reinsurance is not merely 

a financial transaction; it is a fundamental tool that helps maintain market stability by distributing risk more 

broadly between primary insurers and reinsurers. This collaborative risk-sharing model ensures that primary 

insurers can continue fulfilling their policyholder claims even in the face of devastating, large-scale 

catastrophic events, thereby safeguarding the integrity of the insurance market. 

However, earthquake events present unique challenges for risk modeling. They are characterized by 

extreme variability in their magnitude, intensity, and location, and involve multiple interdependent risks that 

can cascade across different insurance lines. This inherent complexity makes them notoriously difficult to 

model effectively using traditional actuarial methods. Conventional methods of reinsurance valuation often 

prove inadequate when confronted with the multifaceted nature of catastrophic events, especially when 

considering the intricate interdependencies between different types of claims such as life insurance, property, 

and health. 

The research gap in the existing literature is a significant one: there is an identified need for the development 

and application of advanced statistical models specifically tailored for life insurance reinsurance pricing in 

regions highly susceptible to earthquakes, such as Indonesia. While advanced statistical models, including the 

Peaks Over Threshold (POT) model and copula techniques, have been recognized as essential tools for 

assessing extreme events and capturing dependencies [3], and Monte Carlo simulations are highly valued for 

pricing catastrophe bonds by generating multiple disaster scenarios [4], their integrated application and 

empirical validation for life insurance products in the context of Indonesian earthquake data, for the purpose 

of developing more precise and robust reinsurance pricing models, remain largely underexplored. Existing 

models often fail to fully capture the unique characteristics of life insurance claims in a catastrophic earthquake 

scenario, including mortality rate spikes, long-term health complications leading to claims, and the potential 

for a large number of simultaneous claims. 

This research, therefore, aims to bridge this critical gap. The ultimate goal is to significantly improve life 

insurance reinsurance pricing by offering sophisticated models that accurately reflect the intricate and complex 

nature of catastrophic risks stemming from seismic activity. By applying and integrating advanced statistical 

techniques such as the POT model, copula techniques to model the dependencies between various claim types 

affecting life insurance (e.g., direct mortality vs. long-term health complications), and Monte Carlo simulations 

to generate a multitude of realistic disaster scenarios, this study seeks to enhance the ability of both primary 

insurers and reinsurers to more accurately estimate potential losses and financial exposures specifically related 

to life insurance portfolios. By leveraging granular data from past Indonesian earthquakes and a deep 

understanding of their impact on life insurance claims, this research will contribute to more precise pricing 

models for catastrophe reinsurance contracts. This will, in turn, lead to enhanced decision-making regarding 

risk pricing, coverage limits, and capital allocation, ultimately fostering a more resilient financial ecosystem 

for the life insurance sector in an increasingly volatile environment. In regions like Indonesia, where seismic 

activity is frequent and the stakes for human life are exceptionally high, such refined models are not merely 

academic exercises but crucial tools for navigating the complex and vital landscape of life insurance 

catastrophe risk management. 
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2. METHODS 

 
Figure 1. Methods Flowchart 

Figure 1 illustrates the comprehensive methodology employed in this research to develop a robust single 

premium valuation model for catastrophe reinsurance contracts, specifically targeting life and health insurance 

policies in Indonesia. The process begins with data input from NOAA, capturing historical earthquake events, 

followed by the estimation of the frequency of earthquakes per year using a Poisson distribution to model 

potential future occurrences. The core of the model then focuses on the extreme impacts of these events: 𝑋 

represents the total number of deaths, directly impacting life insurance claims, and 𝑌 represents the total 

number of injuries, relevant for health insurance claims. A threshold is determined from the historical data for 

both 𝑋 and 𝑌 to identify extreme events, and their cumulative distribution functions (CDFs) are created using 

the Peaks Over Threshold (POT) method with the Generalized Pareto Distribution (GPD). To accurately 

capture the inherent co-occurrence and interconnectedness of deaths and injuries in catastrophic events, a joint 

distribution function is created using copula theory (specifically the Gumbel copula) to model the dependency 

structure between 𝑋 and 𝑌. This integrated probabilistic framework then feeds into a Monte Carlo simulation 

process, which first simulates the number of quakes in a year based on the Poisson distribution, and then 

generates potential joint outcomes of deaths (𝑋) and injuries (𝑌) for each simulated extreme earthquake event. 

These simulated outcomes are crucial inputs for the asset pricing calculation for a real-case scenario, which 

ultimately determines the single reinsurance premium price. This final premium represents the expected 

present value of potential claims that exceed the primary insurer's specified retention limit, providing an 

actuarially sound basis for transferring catastrophic life and health insurance risks. A detailed breakdown of 

each step, from data input to premium calculation through Monte Carlo simulations, is provided below. 

2.1 Peaks-Over-Threshold 

The Peaks Over Threshold (POT) method is a widely used technique in Extreme Value Theory (EVT) for 

identifying and modelling extreme observations. POT focuses on all data points that exceed a predefined high 

threshold. This allows for more efficient use of available data, particularly in contexts such as catastrophe 

reinsurance where extreme losses are rare but highly impactful. 

In the POT framework, a threshold value 𝑚 is selected, and any observation 𝑋 such that 𝑋 > 𝑚 is 

considered an extreme event. The exceedances over this threshold are then modeled using the Generalized 

Pareto Distribution (GPD). For a sufficiently high threshold, the distribution of these exceedances can be well 
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approximated by the GPD [5]. This makes the POT method especially useful in modelling the tail behavior of 

distributions, such as those found in catastrophe reinsurance losses. The cumulative distribution function 

(CDF) of the GPD is given by: 

𝐹𝜉,𝛽(𝑦) =

{
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and the probability density function (pdf) for GDP follows: 
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where 𝛽 > 0 and 𝑦 ≥ 0 if 𝜉 ≥ 0,0 ≤ 𝑦 ≤ −𝛽/𝜉 if 𝜉 < 0, 𝜉 and 𝛽 are the shape parameter and scale parameter, 

correspondingly. 

One commonly applied method for identifying extreme values in a dataset is the percentage-based threshold 

selection. This approach defines a fixed proportion of the highest data points as extreme values. A frequently 

used standard is to consider the top 5% to 10% of the data as extreme.  

Furthermore, having identified and characterized extreme values for deaths and injuries using the Peaks 

Over Threshold method, it becomes imperative to simulate various future scenarios for a comprehensive 

assessment of the overall financial exposure in reinsurance. To achieve this, Monte Carlo simulation serves as 

a crucial methodology, facilitating the robust probabilistic modeling of diverse outcomes by incorporating the 

stochastic factors of earthquake frequency and the severity of extreme events derived from the POT analysis. 

2.2 Monte Carlo Simulation 

The Monte Carlo Simulation is a way to model the probability of different outcomes in a process that cannot 

be easily predicted due to the random factors that could affect the outcomes happening in the future [6]. 

Because of that, the simulation is often referred to as a multiple probability simulation. The Monte Carlo 

simulation can be applied in various problems from different fields such as investments, business, physics, and 

economics. There are often uncertainties in making forecasts or estimates from previous data, but this 

simulation explains the impact of risk and uncertainty in prediction and forecasting models. Monte Carlo 

enables accurate simulations involving randomness and known factors.  

The Monte Carlo analysis consists of input variables, output variables, and a mathematical model. In a 

programming system, it provides independent variables into the mathematical model, simulates them, and 

produces dependent variables. The input variables are random factors that affect the outcome of the Monte 

Carlo simulation. In the case of earthquake occurrences, they factor to be considered are the number of 

earthquakes in the past years of the dataset. The output variable is the result of the Monte Carlo simulation. 

The number of earthquakes happening in the past years would give a forecast of number of earthquakes that 

could happen in the future years.  

The mathematical model would describe the relationship between the input and output variables. The 

average number of earthquakes occurring every year is found from the dataset of past earthquakes. However, 

even though the average is known, future earthquake occurrence each year cannot always occur average times 

as they occur randomly. So, the number of earthquakes that is predicted to happen each year in the future 

would be a random number generated from the mean value and standard deviation [7].The results of the 

simulation can be shown in a histogram that models the relationship between number of earthquakes per year 
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as the horizontal axis, and the number of years that earthquake amount occurred as the vertical axis. The 

histogram would form a standard normal distribution. In a normal distribution, the mean number of earthquakes 

would happen in the greatest number of years. While the number of years where a certain number of 

earthquakes happen becomes lesser as the number of earthquakes increases or decreases.  

The poison distribution calculates the probability that a given number of events will occur in a fixed interval 

of time when they occur at a known average rate [8]. The probability of a given number of earthquakes 

happening in a year can be calculated using Poisson distribution. The probability is highest at the mean or 

median value. And the probability of a higher or lower number of earthquakes than the mean becomes smaller 

the more it increases or decreases. The probability can be calculated using the formula below:  

𝑃(𝑋 = 𝑧)  =  
𝑒−𝜆𝜆𝑧

𝑧!
 

where,  

a. 𝜆 is the mean number of times an event occurs in a given time interval 

b. 𝑧 is the number of times an event is occurring in a given time interval.  

As Monte Carlo simulations generate a multitude of event outcomes for deaths and injuries, accurately 

capturing their intricate interdependencies is crucial, given these variables are rarely independent in real-world 

catastrophic events. Therefore, copulas are utilized to integrate and preserve the statistical dependence 

observed between simulated deaths and injuries, ensuring a more realistic and robust assessment of the 

combined risk within the simulation framework. 

2.3 Copulas 

A copula is a multivariate joint distribution function where each variable has a uniform marginal probability 

distribution on the interval [0,1] [9]. The primary function of a copula is to model the dependencies between 

two or more random variables, separate from their marginal distributions. An advantage in using copulas is 

that it does not require the variables to have identical and normally distributed marginal distributions. Copulas 

are fundamentally based on Sklar’s theorem [10], which states that: 

Sklar’s Theorem. Let 𝐹  be an n-dimensional distribution function with marginals 𝐹1,  𝐹2,   …  , 𝐹𝑛Then there 

exists a copula function 𝐶 , such that for all (𝑋1,  𝑋2,   …  ,  𝑋𝑛)  ∈ ℝ
𝑛 then 

𝐹(𝑋1,  𝑋2,   …  ,  𝑋𝑛)  =  𝐶(𝐹1(𝑋1),  𝐹2(𝑋2),   …  ,  𝐹𝑛(𝑋𝑛)) (3) 

In case of two dependent variables, X and Y, the cumulative distribution function can be written as 𝐶(𝑢, 𝑣), 

where 𝑢 = 𝐹𝑥(𝑋) and 𝑣 = 𝐹𝑦(𝑌).   

2.3.1 Clayton Copulas 

The Clayton copula is a type of copula that captures lower-tail dependence, meaning it exhibits stronger 

dependence between variables for extreme low values compared to high values. The Clayton copula's 

cumulative distribution function (CDF) for two random variables is given by: 

𝐶𝐶𝑙(𝑢, 𝑣) = (𝑢−𝜃 + 𝑣−𝜃 − 1)−
1
𝜃  , 0 < 𝜃 < ∞ (4) 

where, 

a. 𝑢 and 𝑣 are the marginal cumulative distribution functions (CDFs) of the two variables, each uniformly 

distributed on [0,1], 

b. 𝜃 is the dependence parameter, controlling the strength and direction of dependence. 

The probability density function (PDF) of the Clayton copula for two random variables [11] is given by: 

𝐶𝐶𝑙(𝑢, 𝑣) = (𝜃 + 1)(𝑢−𝜃 + 𝑣−𝜃 − 1)−
1
𝜃
−2 (𝑢𝑣)−𝜃−1 (5) 
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where, 

a. 𝑢 and 𝑣 are the marginal cumulative distribution functions (CDFs) of the two variables, each 

uniformly distributed on [0,1], 

b. 𝜃 is the dependence parameter, where higher values indicate stronger lower-tail dependence. 

The conditional copula function for the Clayton copula [12] is given by: 

𝐶𝐶𝑙(𝑣|𝑢) = [1 + 𝑢𝜃(𝑣−𝜃 − 1)]
−1−(

1
𝜃
)

(6) 

And the inverse: 

𝐶𝐶𝑙
[−1]
(𝑣|𝑢) = [(𝑣

−
𝜃
1+𝜃 − 1)𝑢−𝜃 + 1]

−
1
𝜃

(7) 

For the Clayton copula, Kendall’s Tau is given by: 

𝜏𝐶𝑙 =
𝜃

𝜃 + 2
 , 𝜃 𝜖 (0,∞) (8) 

where,  

a. 𝜃 is the dependence parameter of the Clayton copula. 

b. 𝜏𝐶𝑙 increases with 𝜃, indicating stronger lower-tail dependence as 𝜏𝐶𝑙 → 1. 

2.3.2 Gumbel Copulas 

The Gumbel copula is an Archimedean copula that models upper-tail dependence, meaning it captures 

stronger correlations between extreme high values of two variables. The cumulative distribution function 

(CDF) of the Gumbel copula for two random variables is given by: 

𝐶𝐺𝑢(𝑢, 𝑣) = exp {−((− 𝑙𝑛 𝑢)𝜃 + (− 𝑙𝑛 𝑣)𝜃)
1
𝜃} , 1 ≤ 𝜃 < ∞ (9) 

where, 

a. 𝑢 and 𝑣 are the marginal CDFs of the two variables (each uniformly distributed in [0,1]), 

b. 𝜃 is the dependence parameter, controlling the strength of upper-tail dependence. 

The probability density function (PDF) of the Gumbel copula for two random variables is given by: 

𝑐𝐺𝑢(𝑢, 𝑣) = 𝐶𝐺𝑢(𝑢, 𝑣)
[(− ln 𝑢)(− ln 𝑣)]𝜃−1

𝑢𝑣
[(− ln𝑢)𝜃 + (− ln 𝑣)𝜃]

2
𝜃
−2

 

{(𝜃 − 1)[(− ln 𝑢)𝜃 + (− ln 𝑣)𝜃]
−
1
𝜃 + 1} (10) 

Conditional copula for Gumbel copulas with two random variables is listed below: 

𝐶𝐺𝑢(𝑣|𝑢) =
1

𝑢
exp {−((− 𝑙𝑛 𝑢)𝜃 + (− 𝑙𝑛 𝑣)𝜃) 

1
𝜃} [1 + (

ln 𝑢

ln 𝑣
)
𝜃

] −1+
1
𝜃 (11) 

Gumbel copulas lack a closed-form solution for the inverse of their conditional copula function. 

For the Gumbel copula, Kendall’s Tau is given by: 

𝜏𝐺𝑢 = 1−
1

𝜃
 , 𝜃 𝜖 (0,∞) (12) 

where, 
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a. 𝜃 is the dependence parameter of the Gumbel copula. 

b. 𝜏𝐺𝑢 increases with θ, indicating stronger upper-tail dependence as 𝜏𝐺𝑢 → 1. 

3. RESULT AND DISCUSSION 

The dataset for this valuation model comprises Indonesian earthquake data obtained from the National 

Centers for Environmental Information (NOAA) covering the period from 1979 to 2025 (as of April 29). In 

constructing the model, we focus specifically on events where the total number of people affected ranges from 

1 to 50. This range is selected to capture typical catastrophic events while excluding extreme outliers. Notably, 

we exclude the 2004 Aceh earthquake from the dataset due to its exceptionally high impact, which would 

disproportionately skew the model. The valuation model will be specifically designed to leverage the “total 

deaths” (X) and “total injuries” (Y) variables to estimate the expected losses for life and health insurances 

products, which are then expected to be covered by the catastrophe reinsurance contract.  

3.1 Descriptive Statistics 

Table 1 shows that the average number of deaths and injuries resulting from catastrophic events is 

approximately 142 and 524, respectively. Despite relatively low median values of 4 for deaths and 28 for 

injuries, the data contains several large observations, with maximum values reaching 4,340 for deaths and 

10,679 for injuries. This wide range, along with high skewness values of 6.19 for deaths and 5.01 for injuries, 

supported by the kurtosis values, confirms the heavy-tailed nature of the data, suggesting the presence of rare 

but significant events. These statistical properties highlight the need for extreme value theory in modelling 

such variables, particularly in disaster reinsurance, where accurate risk evaluation is crucial. 

Table 1. Descriptive statistic of total deaths and total injuries 

 
Figure 2. Total deaths and injuries data 

Figure 2 illustrates the total deaths and total injuries resulting from earthquake events in Indonesia from 

1979 to 2025. For much of the early period (1979 to early 2000s), most earthquake events resulted in relatively 

low casualties, rarely exceeding a few hundred individuals. However, the graph displays notable spikes in later 

years, particularly during the 2010s, where some events caused thousands of deaths and injuries, reflecting the 

Variable Mean Standard 

Deviation 

Min Q1 Q2 Q3 Max Kurtosis Skewness 

Total Deaths (𝑋) 141.8276 607.8151 1 1 4 23 4340 41.6074 6.1904 

Total Injuries (𝑌) 524.3103 1729.5682 1 8.5 28 237.5 10679 25.9211 5.0074 
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occurrence of major catastrophes. These spikes highlight the presence of extreme events that significantly 

deviate from the general pattern and are essential in risk modelling. 

 
Figure 3. Distribution of total deaths 

 
Figure 4. Distribution of total injuries 

The histograms illustrate the distribution of total deaths and injuries caused by earthquakes. From Figure 

3, it is evident that most earthquakes result in relatively low death counts, with over 70 instances concentrated 

in the lowest range. However, a small number of events show extremely high death tolls, with one event 

exceeding 4,000 deaths. This indicates a right-skewed distribution, where the majority of earthquakes are not 

deadly, but a few rare cases cause catastrophic loss of life. 

Similarly, Figure 4 shows a comparable pattern with total injuries. The majority of earthquakes caused 

fewer than 2,000 injuries, but there are notable outliers, with one causing over 10,000 injuries and another 

close to 8,000. This also reflects a heavily right-skewed distribution. These patterns suggest that while high-

impact earthquakes are infrequent, their effects are disproportionately severe. 
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3.2 Poisson Parameter Estimation  

 
Figure 5. Number of earthquakes per year 

Based on the historical earthquake data in Indonesia, the number of earthquakes per year was analysed 

and assumed to follow a Poisson distribution, which is appropriate for modelling the occurrence of earthquakes 

over a certain time interval. The parameter of the Poisson distribution, 𝜆 (lambda), representing the average 

number of earthquakes per year was estimated using the Maximum Likelihood Estimation (MLE) method. The 

estimated 𝜆 (MLE) = 1.2609, this indicates that on average, approximately 1.2609 earthquakes occur per year 

in the dataset. 

3.3 Threshold and POT Model Parameter Estimation 

Table 2 presents the estimation of the Peak Over Threshold (POT) model parameters used to analyze 

extreme values of earthquake-related deaths and injuries. The thresholds 𝒎𝒙 and 𝒎𝒚 represent the minimum 

values above which the total deaths (𝑿) and injuries (𝒀) are considered extreme.  

 
Figure 6. Extreme event distribution for total deaths and injuries 

The shape parameters 𝝃𝒙 and 𝝃𝒚 determine the heaviness of the tail of the distribution, indicating the 

likelihood of very large extreme events. The scale parameters 𝜷𝒙 and 𝜷𝒚 reflect the spread or dispersion of 

these extreme values.  
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Table 2. Threshold and POT parameters result estimation 

Parameters Estimation 

𝑚𝑥 517 

𝜉𝑥 0.7073562 

𝛽𝑥 447.822 

𝑚𝑦 1285 

𝜉𝑦 0.0071078 

𝛽𝑦  3816.675 

From Table 2 and the empirical cumulative distribution function (𝐹̂(𝑥)) can be obtained: 

𝐹𝑥(𝑥) = {
(1 − 𝐹̂𝑥(517) 𝐻𝜉̂𝑥,𝛽̂𝑥

(𝑥 − 517) + 𝐹̂𝑥(517), 𝑥 > 517

𝐹̂(𝑥), 𝑥 ≤ 517
 

with 

𝐻𝜉̂𝑥,𝛽̂𝑥
(𝑥 − 517) = 1 − (1 + 0.7073562

(x − 517)

447.822
)

−
1

0.7073562

. 

and 

𝐹𝑦(𝑦) = {
(1 − 𝐹̂𝑦(1285) 𝐻𝜉̂𝑦,𝛽̂𝑦

(𝑦 − 1285) + 𝐹̂𝑦(1285), 𝑦 > 1285

𝐹̂(𝑦), 𝑦 ≤ 1285
 

with  

𝐻𝜉̂𝑦,𝛽̂𝑦
(𝑦 − 1285) = 1 − (1 + 0.0071078

(y − 1285)

3816.675
)

−
1

0.0071078

. 

where, 𝐹𝑥(𝑥) the cumulative distribution functions for deaths and 𝐹𝑦(𝑦) for injuries. 

3.4 Copula Parameter Estimation 

The parameter estimation for Clayton copulas and Gumbel copulas are in Table 3. 

Table 3. Copulas parameter estimation 
Copula 𝜃 

Gumbel 2.057 

Clayton 1 

By substituting the estimation result for each copula, the cumulative distribution function for the copulas can 

be derived as follows: 

𝐶𝐺𝑢(𝑢, 𝑣) = exp {−((− 𝑙𝑛 𝑢)2.057 + (− 𝑙𝑛 𝑣)2.057)
1

2.057}  

𝐶𝐶𝑙(𝑢, 𝑣) = (𝑢(−1) + 𝑣(−1) − 1)
(1)

 

The best-performing copula for catastrophic reinsurance contract evaluation, selected based on the lowest 

Akaike Information Criterion (AIC) value, is reported in Table 4. 

Table 4. Copulas parameter estimation 

 

 

Copula 𝐴𝐼𝐶 

Gumbel -24.9581 

Clayton -2.5665 
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Gumbel copulas have the lowest AIC score compared to Clayton copulas. Hence, Gumbel copulas would be 

used in evaluating catastrophic reinsurance contracts. The joint cumulative distribution function for x and y 

will be constructed by these copulas as follows: 

𝐶𝐺𝑢(𝑢, 𝑣) = exp {−((− 𝑙𝑛 𝑢)2.057 + (− 𝑙𝑛 𝑣)2.057)
1

2.057} . 

3.5 Monte Carlo Simulation  

Using the estimated λ value, a Monte Carlo Simulation was conducted with 10000 iterations to model the 

possible variation in the number of earthquakes per year. The results of the simulations are shown in Table 5. 

Table 5. Summary of Monte Carlo Simulation 
Monte Carlo Simulation Descriptive 

Mean 1.2518 

Standard Deviation 1.1173 

Minimum 0 

Maximum 7 

1st Quartile (Q1) 0 

Median 1 

3rd Quartile (Q3) 2 

P(earthquakes > 5/year) 0.2600 

The histogram of the simulation shows that most years have an earthquake count centred around the average 

value of λ. The median value closely matches the mean, suggesting the distribution is nearly symmetric and 

consistent with the theoretical properties of the Poisson distribution. 

 
Figure 7. Monte Carlo Simulation: Number of Earthquakes per Year 

The simulation supports the conclusion that the Poisson distribution is a suitable model to provide forecasting 

for future yearly occurrence of earthquakes and can be a useful tool for risk assessment if necessary. 

Another Monte Carlo Simulation was conducted to generate 8378 potential joint outcomes (𝑿𝒊 ,  𝐘𝐢) of 

deaths (𝑿) and injuries (𝒀) for extreme events which exceed the thresholds ( 𝒎𝒙  =  𝟓𝟏𝟕,  𝒎𝒚 = 𝟏𝟐𝟖𝟓 ). This 

simulated data of extreme deaths and injuries is then used in pricing. A Gumbel copula (𝜽  =  𝟐. 𝟎𝟓𝟕 ) is used 
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within the simulation to model the dependence alongside Generalized Pareto Distributions with parameters 

(𝝃𝒙 =  𝟎. 𝟕𝟎𝟕𝟑𝟓𝟔𝟐,  𝝈𝒙  = 𝟒𝟒𝟕.𝟖𝟐𝟐,  𝝃𝒚 =  𝟎. 𝟎𝟎𝟕𝟏𝟎𝟕𝟖,  𝝈𝒚  = 𝟑𝟖𝟏𝟔.𝟔𝟕𝟓) for the marginals of the 

exceedances. The results of the simulation are plotted in Figure 8. 

 

Figure 8. Scatterplot of Simulated Extreme Deaths and Injuries 

It is evident in the scatterplot above that there is a clear positive association between the simulated extreme 

deaths and injuries beyond the threshold. In other words, events that result in a higher number of deaths tend 

to also result in higher number of injuries. This pattern is consistent with the dependence structure imposed by 

the Gumbel copula, which is specifically suited for modelling upper tail dependence. 

3.6 Case Implementation and Expected Reinsurance Value Calculation  

This section details the practical implementation of our model for valuing a catastrophe reinsurance contract 

in a real-world scenario. The valuation and premium calculation are conducted under the following key 

assumptions for Company A (the primary insurance company) and Company B (the reinsurance company): 

a. Reinsurance Contract Structure:  

Company B provides stop-loss catastrophe reinsurance to Company A. This contract stipulates that 

Company B will cover any losses exceeding Company A's annual retention limit of Rp15,000,000,000 

(fifteen billion Indonesian Rupiah) per catastrophic event within a one-year period.  

b. Average Claim Payouts per Person:  

1) For life insurance: Rp 500,000,000 per death. 

2) For health insurance: Rp 15,000,000 per injury. 

c. Company A’s Insurance Penetration: 

These percentages represent the proportion of the Indonesian population holding policies with 

Company A:  

1) For life insurance: 5% of the Indonesian population. 

2) For health insurance: 7% of the Indonesian population. 

d. Discount Rate (𝑖):  

A discount rate of 5.75%, is applied, based on the latest Bank Indonesia (BI) rate in 2025. 
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Based on these penetration rates and average payouts, the effective claim cost per affected individual for 

Company A, considering only its insured population, is calculated as follows: 

𝐶1 =  5 %  ×  𝑅𝑝 500,000,000  =  𝑅𝑝 25,000,000 

𝐶2 =  7 %  ×  𝑅𝑝 15,000,000  =  𝑅𝑝 1,050,000 

where: 

a. 𝐶1= Represents the average claim cost per fatality for Company A's life insurance policies. 

b. 𝐶2= Represents the average claim cost per injury for Company A's health insurance policies. 

Next, the asset pricing formula for the reinsurance premium is applied to the simulated data generated by 

the Monte Carlo process. This formula calculates the expected present value of the claims that exceed the 

retention limit. Specifically, the formula is: 

𝜋  =  ∑𝑓(𝑋𝑡  ,  𝑌𝑡)(1  +  𝑖)
−𝑡

𝑁

𝑡=1

 

where: 

a. 𝜋 = Total premium for the reinsurance contract 

b. 𝑁 = Number of simulations (10,000) 

c. 𝑓(𝑋𝑡  ,  𝑌𝑡) = Claims function, based on number of deaths (𝑋𝑡) and number of injuries (𝑌𝑡) for each 

catastrophic event in simulation 𝑡. This function represents the actual loss to the primary insurer, 

Company A, for a given event, after considering the insurance penetration rates. 

d. 𝑋𝑡 = Represents the simulated number of deaths for a given catastrophic event 𝑡 in the Monte Carlo 

simulation. 

e. 𝑌𝑖 = Represents the simulated number of injuries for a given catastrophic event 𝑡 in the Monte Carlo 

simulation. 

f. 𝑖 = Discount rate (5.75%) 

g. 𝑡 = Time Period (representing each simulated event within the total N simulations). 

By incorporating the calculated effective claim costs (𝑪𝟏 and 𝑪𝟐) and the specified retention limit, the 

claims function 𝒇(𝑿𝒕 ,  𝒀𝒕) can be defined. The total claim incurred by Company A for a single event before 

reinsurance recovery is 𝑪𝟏𝑿𝒕 + 𝑪𝟐𝒀𝒕. The reinsurer (Company B) covers only the portion of this claim that 

exceeds Company A's retention limit of Rp15,000,000,000. This is expressed using the 𝒎𝒂𝒙(𝟎, . . . ) function 

to ensure claims are non-negative: 

𝜋  =  ∑max{0, (25  ×  106   𝑋𝑖   +  1,05  ×  10
4  𝑌𝑖   − 15 ×  10

9)} (1  +  5.75%)−𝑡𝑖
𝑁

𝑖=𝑖

 

Substituting the simulated data obtained from the 10,000 Monte Carlo iterations into this formula, the total 

premium for the reinsurance contract, which represents the single reinsurance premium Company A would 

pay to Company B, is calculated as: 

P =
∑ 𝜋𝑖10,000
𝑖=1

10,000
  =  17,395,932,553.808212 

The calculated single reinsurance premium of Rp17,395,932,553.81 represents the actuarially sound price 

for transferring the defined catastrophic earthquake risk from Company A to Company B. This premium is the 

expected present value of the potential claims that Company B would be obligated to cover, i.e., those 

exceeding Company A's Rp15 billion retention limit for life and health insurance policies. 

This premium value is highly plausible given the nature of catastrophe reinsurance and the inherent 

characteristics of earthquake risk in Indonesia. While this sum may appear substantial, it is commensurate with 

the potential for extremely large, albeit infrequent, losses that such events can trigger. Catastrophe reinsurance 
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is specifically designed to protect primary insurers from tail risk – the low-probability, high-severity events 

that could otherwise lead to severe financial distress or even bankruptcy. The calculated premium reflects the 

cost of offloading this critical exposure. 

To contextualize this premium, a comparison against a hypothetical total annual premium received by 

Company A for its life and health insurance products is conducted. Assuming Indonesia's population is 

approximately 280 million people: 

a. Company A's life insurance policyholders: 5% of 280 million = 14 million people. 

b. Company A's health insurance policyholders: 7% of 280 million = 19.6 million people. 

Assuming, hypothetically, the average annual premium for a life insurance policy is Rp 1,000,000 and for 

a health insurance policy is Rp 500,000, then Company A's approximate total annual premium income from 

these products would be: 

a. Life insurance premiums:  

14,000,000 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 ×  𝑅𝑝 1,000,000/𝑝𝑜𝑙𝑖𝑐𝑦 =  𝑅𝑝 14,000,000,000,000 

b. Health insurance premiums:  

19,600,000 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 ×  𝑅𝑝 500,000/𝑝𝑜𝑙𝑖𝑐𝑦 =  𝑅𝑝 9,800,000,000,000 

c. Total hypothetical annual premium income:  

𝑅𝑝 14,000,000,000,000 +  𝑅𝑝 9,800,000,000,000 =  𝑅𝑝 23,800,000,000,000 

Comparing the calculated reinsurance premium of Rp17,395,932,553.81 to this hypothetical total annual 

premium income (Rp 23.8 trillion), the reinsurance premium represents a small fraction (approximately 

0.073%). This comparison underscores that the reinsurance premium is not intended to cover all claims but 

specifically acts as a crucial safeguard against the financial consequences of infrequent, highly impactful 

catastrophic events that exceed the primary insurer's capacity to absorb. This relatively small cost, in 

proportion to total premium income, provides significant financial stability and resilience for Company A, 

ensuring it can fulfill its obligations to policyholders even in the direst disaster scenarios. It facilitates the 

effective transfer of severe tail risk, which is a core function of the reinsurance market. 

 

4. CONCLUSIONS 

This research analyzes Indonesian earthquake data from 1979 to 2025, focusing on events that affected 

between 1 and 50 people to avoid extreme outliers (like the 2004 Aceh earthquake). The data reveals that while 

most earthquakes cause relatively few casualties, a few rare but devastating events lead to thousands of deaths 

and injuries, resulting in a heavily right-skewed distribution. This extreme variability highlights the importance 

of using advanced statistical methods, such as extreme value theory, to model these risks accurately. The study 

estimates that earthquakes occur at an average rate of about 1.26 per year, which follows a Poisson distribution. 

For extreme events, by setting thresholds of 517 deaths or 1,285 injuries, the Generalized Pareto Distribution 

(GPD) was applied to model the distribution. Furthermore, since there is a strong dependence between deaths 

and injuries in major disasters, Gumbel copula is used to model this dependency. 

Using Monte Carlo simulations, the research generated ten thousand potential disaster scenarios to estimate 

expected reinsurance costs. Assuming a retention limit of Rp15 billion for the insurer and fixed claim values 

per affected policyholder, the model calculated the expected reinsurance payout. The results help insurers and 

reinsurers better prepare for catastrophic events by pricing coverage more accurately. Specifically, the 

calculated single reinsurance premium is Rp17,395,932,553.81. This value represents the actuarially sound 

price for transferring the defined catastrophic earthquake risk (exceeding the Rp15 billion retention limit) from 

the primary insurer to the reinsurer, providing a concrete cost for this critical risk transfer. While substantial, 

this premium is plausible given the high-severity, low-frequency nature of the events it covers, protecting 

against significant financial distress or potential bankruptcy from tail risks. Contextualizing this, the 

reinsurance premium typically represents a small fraction of an insurer's total annual premium income from 
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covered life and health insurance products, underscoring its role as a vital safeguard for financial stability 

rather than a cost covering all claims. 

However, the study has some limitations. Excluding the 2004 mega-disaster may underestimate worst-case 

scenarios, and fixed assumptions about insurance coverage and claim values might not reflect real-world 

variability. Future research could expand the dataset, test alternative copula models, and explore dynamic 

insurance penetration rates for more precise risk assessment. Overall, this approach provides a valuable 

framework for managing earthquake-related risks in Indonesia’s reinsurance market. 
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