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Abstract 

Customer churn prediction is essential in the telecommunications industry, where 

maintaining existing customers is significantly more cost-effective than acquiring 

new ones. This study introduces a precision-oriented stacked ensemble model to 

predict churn using the IBM Telco Customer Churn dataset. Emphasis is placed on 

maximizing precision to reduce false positives, thereby minimizing unnecessary 

and costly intervention efforts. The proposed architecture employs LightGBM, 

CatBoost, and Logistic Regression as base learners, with a fine-tuned ElasticNet 

serving as the meta-learner. Evaluation results show that the stacking model 

achieves strong overall performance, attaining an AUC of 0.917 and the highest 

precision among all models tested. To ensure interpretability, SHapley Additive 
exPlanations (SHAP) are applied to identify key drivers of churn such as number 

of referrals, contract type, monthly charges, and tenure. These findings 

demonstrate that a precision-focused approach can balance business efficiency 

and predictive power, offering a robust framework for proactive and cost-sensitive 

churn management. 
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1. INTRODUCTION 

Customer churn remains a critical challenge in the telecommunications industry, as it significantly impacts 

revenue stability and long-term competitiveness. Retaining existing customers is far more cost-effective than 

acquiring new ones, with acquisition expenses estimated to be up to five times higher than retention costs [1]. 

Globally, churn rates in telecom services vary between 20% and 40% annually, influenced by regional market 

conditions and service offerings [2]. Consequently, early and accurate identification of at-risk customers has 

become essential for sustaining profitability. 

One promising solution is churn prediction using machine learning techniques. Traditional models such as 

Random Forest, Gradient Boosting, and Logistic Regression have achieved high classification performance, 

with Random Forest models often exceeding 85% accuracy and an F1-score above 0.80 [3]. However, single 

models can suffer from limited generalization on unseen data. As a result, ensemble methods have gained 

traction for their ability to integrate multiple models and improve prediction accuracy and stability [4], [5]. 
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Stacked ensemble models combine diverse base learners such as decision trees, gradient boosters, and 

neural networks with a meta-learner that synthesizes their outputs. Research has shown that stacking can 

improve churn prediction performance by 3–5% over individual models, especially in imbalanced datasets [6], 

[7]. For instance, Shaikhsurab and Magadum [6] implemented a stacking model incorporating XGBoost, 

LightGBM, and neural networks, achieving a 99.28% accuracy on telecom churn datasets. Similarly, Awang 

et al. [7] demonstrated that stacking outperformed single classifiers, bagging, and boosting techniques across 

several evaluation metrics. 

Although these studies validate the effectiveness of stacked models, most focus on optimizing general 

metrics such as accuracy or AUC. In practice, however, false positives in churn prediction may result in 

unnecessary intervention efforts and operational costs. This business context underscores the need for a 

precision-oriented approach that emphasizes minimizing false positives. Despite its relevance, only a few 

studies have explicitly targeted precision as the primary objective, especially in stacking-based frameworks 

[8]. 

In addition, there is limited research that combines diverse base learners such as LightGBM, CatBoost, and 

Logistic Regression with a regularized meta-learner like ElasticNet, while also incorporating model 

interpretability techniques such as SHapley Additive exPlanations (SHAP). Previous works often focus either 

on performance or interpretability, but rarely aim to balance both dimensions simultaneously [9]. 

To address these gaps, this study proposes a precision-oriented stacking ensemble model for churn 

prediction. The model integrates LightGBM, CatBoost, and Logistic Regression as base learners, with 

ElasticNet as the meta-learner. Although the model was initially tuned using AUC to ensure robust 

classification capability, evaluation results highlight its superior precision, making it particularly suitable for 

cost-sensitive scenarios. Furthermore, SHAP is employed to provide interpretability, allowing business 

stakeholders to identify and understand the key drivers of churn. 

 

 
2. METHODS 

2.1 Data Source and Preprocessing 

 

In this study, the IBM Telco Customer Churn dataset is used, which was obtained through an open-source 

platform, Kaggle. The dataset contains a total of 7,043 customer entries, each consisting of 50 features 

representing multidimensional information about customer characteristics and churn status. The dataset was 

selected due to its relevance and completeness in capturing historical customer data in the telecommunications 

sector, including demographic variables, types of services used, and customer churn status. Preliminary 

analysis reveals that the dataset has an imbalanced class distribution, with 26.54% of customers having churned 

and 73.46% having remained, as visualized in Figure 1. 
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Figure 1. Distribution diagram of customer churn 
 

 

This study utilizes the IBM Telco Customer Churn dataset, obtained from the open-source platform 

Kaggle. The dataset contains 7,043 customer records with 50 initial features, comprising 19 numerical and 31 

categorical variables. These features include demographic data, customer behavior, billing history, and service 

subscriptions. 

Prior to modeling, an extensive preprocessing phase was conducted to ensure data quality and 

compatibility with machine learning algorithms. As illustrated in Figure 2., the preprocessing steps included: 

• Feature elimination: Irrelevant or redundant variables such as 'Customer ID', 'Country', 'State', 

'Latitude', 'Longitude', and high-missing-value fields like 'Churn Reason' and 'Offer' were removed. 

• Handling missing values: Missing categorical values were either removed or filled with default labels 

(e.g., “Unknown”), depending on distribution and frequency. 

• Feature transformation: Variables were transformed using different encoding strategies: 

o StandardScaler for normalizing continuous numerical features such as 'Tenure in Months', 

'Monthly Charge', and 'Total Revenue'. 

o OrdinalEncoder for ordered categorical features (e.g., 'Contract', 'Senior Citizen', 'Multiple 

Lines'). 

o OneHotEncoder for nominal categorical variables such as 'Contract', 'Payment Method', and 

'Offer'. 

o CountEncoder for high-cardinality categorical features like 'City' and 'Zip Code'. 

After preprocessing, the resulting dataset consisted of 47 engineered features, as visualized in Figure 2., 

which shows the transformation from the raw (Before) to final processed dataset (After). 
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Figure 2. Data preprocessing pipeline 

 

2.2 Overall Process of Customer Churn Analysis Model Construction 

 

This study employs a machine learning pipeline to predict customer churn, structured in several stages as 

illustrated in Figure 3. The process begins with data cleaning, imputation, and feature transformation through 

appropriate encoding strategies. Following preprocessing, the dataset is split into training and test sets, and 

further evaluated using repeated K-Fold cross-validation to ensure robust model assessment. 

Several classification models were trained, including Decision Tree, K-Nearest Neighbors, Logistic 

Regression, Random Forest, XGBoost, Gradient Boosting, Extra Trees, LightGBM, and CatBoost. Based on 

their ROC AUC performance, three top-performing models were selected as base learners for a stacking 

ensemble. 

These base learners produced out-of-fold predictions which were used as input features for the meta-learner, 

implemented as a Logistic Regression model. To ensure optimal performance and generalization, the meta- 

learner was tuned using Optuna, which explored a range of regularization settings: 

• Various solver–penalty combinations, including: 

('liblinear', 'l1'), ('liblinear', 'l2'), ('saga', 'l1'), ('saga', 'l2'), and ('saga', 'elasticnet') 

• Regularization strength CCC, searched on a log-uniform scale between 10−310^{-3}10−3 and 

10210^2102 

• Number of iterations (max_iter) ranging from 100 to 1000 

• For ElasticNet, the l1_ratio was also optimized in the range [0, 1] 

All configurations were evaluated using ROC AUC as the primary optimization metric. This process 

ensured a fair and systematic selection of the meta-learner configuration for the final ensemble model. Model 

interpretability was performed using SHapley Additive exPlanations (SHAP), allowing both global and local 

understanding of feature contributions to churn predictions. 



Tajmahal Ghaza Antani / Indonesian Actuarial Journal 
Vol. 01, No. 02, December (2025) 

e-ISSN 3110-6463 

 

141 

 

 

 

 

Figure 3. General flow chart of IBM telco customer churn analysis model 

2.3 Machine Learning Algorithms 

Four main algorithms were utilized to build the churn prediction model, including three base learners and 

one fine-tuned meta-learner. Our approach maximalize the potential of the model also increasing the accuracy 

of the overall method being used. The description of each model and its loss function is provided below: 

LightGBM: Light Gradient Boosting Machine (LightGBM) is a tree-based boosting algorithm that follows 

a leaf-wise growth strategy and is designed for high efficiency with large datasets. It supports various data 

types, including categorical features, and is suitable for both classification and regression tasks. LightGBM 

employs advanced techniques such as early stopping, regularization, and histogram-based binning to speed up 

training and reduce overfitting. A 5-fold cross-validation reduces bias and ensures the model performs well 

with any subset of testing data [10]. LightGBM optimizes a combined objective function of loss and 

regularization: 
 

𝑛 𝐾 

𝐿(∅) = ∑ 𝑙(𝑦𝑖, 𝑦 1) + ∑ Ω(𝑓𝑘) 
𝑖=1 𝑘 = 1 

(1) 

Where 
𝑇 

1 
Ω(𝑓𝑘) = 𝛾𝑇 𝜆 ∑ 𝑤2 

2 𝑗 

𝑗=1 

(2) 

with 𝑇 as the number of leaves and 𝑤𝑗 the output at leaf 𝑗 . The loss function typically used is binary cross- 

entropy with L2 regulariza tion on the leaf outputs. 
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CatBoost: a boosting algorithm specifically designed to handle categorical fea tures efficiently. Unlike 

LightGBM, CatBoost employs symmetric (oblivious) trees, where all nodes at a given depth use the same 

splitting criterion. This results in balanced tree structures and more efficient computation. Furthermore, 

CatBoost introduces ordered boosting, a method that uses a permutation-driven technique to avoid target 

leakage and reduce overfitting, especially on small datasets. CatBoost is known for its ability to handle 

categorical features effectively without requiring manual encoding or preprocessing. It also uses various 

techniques to prevent overfitting, such as random permutations of feature values and gradient-based sampling 

of the training data [11]. Its objective function for binary classification is: 
 

𝑛 

𝐿(∅) = − ∑[𝑦𝑖 log(𝜎(𝑦 𝑖)) + (1 − 𝑦𝑖) log(1 − 𝜎(𝑦 𝑖))] 
𝑖=1 

(3) 

Where 

𝜎(𝑦  ) = 
1 

. 
𝑖 1+𝑒−𝑦 𝑖 

CatBoost relies on implicit regularization through model structure and boost ing strategy without explicit 

penalty terms. 

Logistic Regression: In machine learning, Logistic Regression is a linear classification model that models 

the probability of a class using the sigmoid function. The loss function is binary cross-entropy: 
 

𝑛 
1 

𝐿(∅) = −  ∑[𝑦𝑖 log(𝑦𝚤) + (1 − 𝑦𝑖) log(1 − 𝑦1 )] 
𝑛 

𝑖=1 

(4) 

ElasticNet (Finetuned Meta Learner): ElasticNet is a variation of Logistic Regression that incorporates 

a combination of L1 (Lasso) and L2 (Ridge) regularization. The ElasticNet model optimizes regression 

coefficients by selecting relevant variables through Lasso (L1) and shrinking the impact of insignificant 

variables using Ridge (L2), thereby enhancing the model’s ability to predict customer churn more accurately 

[12]. The loss function is: 
 

𝑛 
1 

𝐿(∅) = −  ∑[𝑦𝑖 log(𝑦𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖) + 𝜆1‖𝑤‖1 + 𝜆2‖𝑤‖2] 
𝑛 2 

𝑖=1 

(5) 

The ElasticNet penalty was found to be optimal through hyperparameter tuning using Optuna, resulting in 

better generalization for the meta-learner. 

 

2.5 Interpretability of the Integrated SHAP Model 

 

SHAP (Shapley Additive Explanations), a framework proposed by Lundberg, is a significant interpretability 

method derived from cooperative game theory. For each prediction sample, the model produces a predicted 

value, and SHAP calculates Shapley values for each feature, reflecting their individual contribution to the 

overall prediction. SHAP interprets a model’s prediction as the sum of Shapley values for each input feature, 

explaining both the magnitude and direction of influence that each feature has on the final prediction. 

Let 𝑥𝑖 be the i-th sample, where the j-th feature of 𝑥𝑖 is denoted by 𝑥𝑖,𝑗 . Let 𝑦𝑖 represent the model's 

predicted value for this sample, and let 𝑦𝑏𝑎𝑠𝑒 denote the average value of the target variable across all samples 

(i.e., the SHAP baseline value). The SHAP value associated with 𝑥𝑖𝑗 is denoted by 𝑓(𝑥𝑖𝑗) . Then, the SHAP 

value is defined as: 

𝑦𝑖 = 𝑦𝑏𝑎𝑠𝑒 + 𝑓(𝑥𝑖1) + 𝑓(𝑥𝑖2) + ⋯ + 𝑓(𝑥𝑖𝑘) (6) 
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3. Experimental Analysis 

3.1 Prepocessing 

This study utilized experimental data comprising 7,043 customer samples, each initially containing 50 

attributes representing churn-related characteristics, final churn status (lost/not lost), and basic customer 

information. Following data cleaning procedures including handling of missing values, elimination of 

irrelevant features, and feature engineering a total of 38 variables were retained for modeling. During data 

preprocessing, continuous features were standardized using Standard Scaler (mean removal and variance 

scaling), while discrete features were encoded based on their nature: One Hot Encoder was applied to nominal 

attributes, and Ordinal Encoder to hierarchical categorical features. All transformations were integrated into a 

single pipeline through Column Transformer, resulting in a final feature set comprising 46 variables for 

modeling purposes. 

3.2 Evaluation Index 

This study applies a combination of five evaluation metrics, each serving a distinct purpose to ensure 

comprehensive and business-relevant assessment of model performance: Accuracy, Precision, Recall, F1- 

score, and AUC. While accuracy provides a baseline understanding of overall correctness, it is inadequate 

alone in imbalanced classification contexts like churn. Precision is emphasized given the business imperative 

to minimize false positives, which represent high cost if there are any misclassifications. F1-score balances 

precision and recall, while ROC AUC captures the discriminatory capacity of classifiers regardless of decision 

thresholds. This multi-metric framework ensures a holistic assessment of each model’s utility. By 

incorporating all five metrics, this study not only captures the statistical performance of the models but also 

ensures alignment with business objectives, especially the focus on high precision, which is emphasized 

throughout this work. 

 

 
𝑇𝑃 + 𝑇𝑁 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃 

𝑇𝑃 
𝑅𝑒𝑐𝑎𝑙𝑙 = 

𝑇𝑃 + 𝐹𝑁 
 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙 

 
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 

3.3 Experimental Results and Analysis 

In this section, we selected nine classification models, XGBoost, CatBoost, LightGBM, Random Forest, 

Logistic Regression, KNN, Gradient Boosting, Decision Tree, and Extra Trees for comparison, and selected 
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Accuracy, AUC, Recall, Precision, F1-score as the evaluation indexes of the models, and the ROC comparison 

results of each classification model are shown in Figure 4., 
 

Figure 4. Comparison results of each classification model. 

To enhance predictive performance, we selected three of the top-performing models: LightGBM, CatBoost, 

and Logistic Regression as base learners. These models independently generate out-of-fold predictions, where 

each model is trained on a subset of the training data and then used to predict the validation fold it has not 

seen. This process is repeated across all folds, ensuring that each prediction is made on unseen data. The 

resulting out-of-fold predictions are then aggregated and used as input features for the meta-learning 

algorithm.. As the meta-learner, we employed ElasticNet due to its ability to handle multicollinearity and 

perform automatic feature selection through L1 and L2 regularization. This stacking ensemble approach 

enables the model to capture diverse patterns learned by the base learners while reducing overfitting. The 

complete architecture of the stacking process is illustrated in Figure 5., The out-of-fold (OOF) prediction 

strategy was pivotal in training the meta-learner. By using OOF outputs from the base models during cross 
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validation, the meta-learner (ElasticNet) was exposed to unbiased base-level predictions, reducing data leakage 

and preserving the ensemble’s generalization power. 

In terms of overall predictive performance in Figure 6., the models demonstrated consistently strong 

discrimination capabilities, with most achieving AUC values exceeding 0.90, a benchmark indicative of 

excellent model quality. Notably, the Stacking model outperformed all individual classifiers, achieving the 

highest AUC score of 0.9171, closely followed by LightGBM (0.9146) and CatBoost (0.9135). The final 

approximate solution is solver = saga, penalty = elasticnet, C = 0.00412, max_iter = 388, l1_ratio = 0.665226. 

 

 

Figure 5. Final structure of stack model 
 

Figure 6. Comparison results of LightGBM and stacking model 

 

Further supporting the model’s effectiveness, the confusion matrix analysis in Figure 7., revealed that the 

Stacking model attained a True Positive rate of 13.72% and maintained a low False Positive rate of just 2.65%. 

This optimal trade-off between sensitivity and specificity is crucial in churn-sensitive industries, where the 

costs of misclassification can have direct financial consequences. 
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Figure 7. Confusion matrix stacking 

The quantitative results in Table 1., affirm our precision-oriented strategy, with the Stacking model 

achieving a superior Precision of 0.8382. This represents a significant 6.64% improvement over the next-best 

model, CatBoost (0.7860), which is critical from a business standpoint as it ensures retention efforts are cost- 

effectively targeted at genuine churn risks, thereby minimizing wasted resources on false positives. While 

other classifiers like LightGBM and CatBoost registered marginally higher accuracy or F1-scores, these came 

at the direct expense of lower precision. The Stacking model's performance, further validated by its class- 

leading AUC of 0.9171, confirms its exceptional ability to accurately identify at-risk customers, making it the 

most practically valuable solution for our objective. 

 

Table 1. Model comparison value. 

Model Precision Recall F1-Score Accuracy AUC 

Stacking Model 0.8382 0.5179 0.6402 0.8458 0.9171 

LightGBM 0.7549 0.6929 0.7225 0.8590 0.9146 

CatBoost 0.7860 0.6821 0.7304 0.8666 0.9135 

Logistic 
Regression 

0.7393 0.6786 0.7076 0.8515 0.9093 

Gradient 
Boosting 

0.7676 0.6607 0.7102 0.8571 0.9087 

XGBoost 0.7421 0.6679 0.7030 0.8505 0.9021 

Random Forest 0.7807 0.6357 0.7008 0.8562 0.8909 

Extra Trees 0.7434 0.6000 0.6640 0.8392 0.8904 

KNN 0.6218 0.6107 0.6162 0.7985 0.8358 

Decision Tree 0.6051 0.5964 0.6007 0.7900 0.7281 

Collectively, the integration of advanced ensemble modeling with detailed interpretability through SHAP 

analysis yields a robust, operationally viable churn prediction system. These findings provide a comprehensive 

and actionable framework for businesses aiming to proactively manage customer retention, demonstrating that 

predictive excellence and interpretability can be achieved simultaneously through a thoughtful combination of 

modern machine learning techniques. 

3.4 Explanatory Analysis of the Model Based on SHAP 

To further enhance the interpretability of our churn prediction models, this study employed SHapley 

Additive exPlanations (SHAP) analysis, which provides a precise measure of each feature's contribution to the 

model's output. SHAP values offer insight not only into the direction (positive or negative impact) of a feature 
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on the likelihood of churn but also into the magnitude of its influence, thus serving as a transparent tool for 

model explanation. 

The SHAP analysis was conducted individually for the three selected base learners; LightGBM, CatBoost, 

and Logistic Regression for the final stacking model. In each SHAP summary plot presented, the horizontal 

axis represents the SHAP value, indicating the extent and direction of impact, while each dot on the vertical 

axis corresponds to an individual customer record. The color gradient from blue to red denotes the relative 

magnitude of feature values, with blue indicating low feature values and red representing high feature values. 

3.4.1 SHAP Summary Plot for LightGBM 

The SHAP summary plot for LightGBM, as illustrated in Figure 7., clearly identifies Number of Referrals 

as the most influential feature in reducing customer churn. Customers with higher referral counts exhibited 

SHAP values skewing heavily to the left, with maximum negative impacts reaching approximately -4.0 on the 

SHAP scale. This strong negative contribution indicates that customers who referred others were substantially 

less likely to churn, suggesting social loyalty effects. Meanwhile, the Contract_Two Year feature exhibited 

consistent SHAP values between -2.5 and -3.0, reinforcing the notion that customers bound by two-year 

contracts possess a significantly lower propensity to churn compared to others. Conversely, the Monthly 

Charge feature demonstrated a SHAP value distribution heavily leaning toward positive contributions, 

peaking around +2.5, implying that higher monthly costs notably elevate the probability of churn. 

 

 

Figure 8. SHAP Summary plot for LightGBM 

Additionally, Tenure in Months showed a complex pattern; lower tenures (depicted in blue) corresponded 

to positive SHAP values, highlighting that newer customers were more inclined to churn, while longer tenures 

(in red) contributed negatively to churn likelihood. Through this LightGBM-based SHAP interpretation, it 

becomes evident that financial commitment (via contract terms) and social factors (through referrals) are 

critical in customer retention strategies. 

3.4.2 SHAP Summary Plot for CatBoost 

In the SHAP summary plot derived from CatBoost, shown in Figure 8., a broadly similar pattern emerges, 

albeit with some nuanced distinctions. The Number of Referrals again surfaced as the most influential feature, 

with SHAP values reaching negative extremes near -2.5. The Contract_Two Year feature mirrored the same 

protective impact against churn, with SHAP values clustering around -2.0, although slightly less pronounced 

compared to LightGBM. Interestingly, Monthly Charge maintained its role as a risk amplifier, but in 

CatBoost, the maximum positive SHAP values were slightly subdued, reaching approximately +2.0. Moreover, 

CatBoost revealed Number of Dependents as a moderately impactful feature, where in customers with more 
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dependents (higher feature values marked in red) tended to show negative SHAP values, suggesting they were 

less likely to churn, potentially due to bundled service incentives or family plan benefits. 

 

 

Figure 9. SHAP Summary plot for CatBoost 

In the SHAP summary plot derived from CatBoost, shown in Figure 8, a broadly similar pattern emerges 

compared to LightGBM, albeit with nuanced distinctions. Number of Referrals remained the strongest 

predictor, showing high negative SHAP values near –2.5, indicating a reduced churn likelihood for socially 

connected users. Contract_Two Year continued to act as a strong retention indicator, while Monthly Charge 

again contributed positively to churn risk. 

What sets CatBoost apart is its elevated attribution to features associated with personal and household context. 

For example, the model assigned moderate SHAP importance to Number of Dependents, with higher values 

(i.e., customers with more dependents) showing consistent negative contributions to churn. This suggests that 

customers with family responsibilities may value bundled or multi-line plans, aligning their churn behavior 

with underlying socioeconomic factors. Unlike LightGBM, which focused more on service contract and 

pricing-related variables, CatBoost provided stronger signals from features such as Dependents and Tenure 

in Years, which indirectly reflect customer life stage, family structure, and long-term economic engagement. 

These patterns indicate that CatBoost is more sensitive to socioeconomic signals, possibly due to its superior 

handling of categorical and ordinal variables without aggressive transformation or binning 

 

 

3.4.3 SHAP Summary plot for Logistic Regression 

Turning to Logistic Regression, depicted in Figure 9., the SHAP distribution presents a distinctly linear 

interpretive pattern, aligning with the model’s inherently interpretable nature. The feature Tenure in Months 

emerged as the most decisive in reducing churn risk, with SHAP values extending down to nearly -4.5, which 

marks the largest negative SHAP contribution among all models analyzed. This finding emphasizes that the 

longer a customer remains subscribed, the less likely they are to churn, a finding both intuitively sound and 

empirically verified. In contrast, Monthly Charge consistently displayed positive SHAP values, peaking 

around +2.5, confirming that customers facing higher charges were more susceptible to churn decisions. 
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Secondary features like Contract_Two Year and Referred a Friend continued to support the trend of reducing 

churn, albeit with more moderate SHAP values ranging between -1.5 to -2.0. 

 

Figure 10. SHAP Summary plot for Logistic Regression 

 

These findings highlight Logistic Regression’s strength in isolating individual linear relationships, reaffirming 

the essential importance of service tenure and pricing in managing customer loyalty. 

3.4.4 SHAP Summary plot for Stacking Model 

Finally, the SHAP analysis of the Stacking Model, presented in Figure 10., illustrates how the combined 

predictive strength of multiple learners synergizes feature contributions. Within this ensemble model, 

LightGBM emerged as the dominant contributor to final predictions, with SHAP values extending up to 

approximately +1.5. CatBoost contributed substantively as well, albeit slightly less, reaching maximum SHAP 

impacts around +1.2, while Logistic Regression played a supportive role, peaking at around +0.4. The balanced 

integration of these models within stacking allowed for a nuanced capture of complex nonlinear patterns from 

boosting algorithms while preserving the straightforward interpretability of linear models. 

 

 

Figure 11. SHAP Summary plot for Stacking Model 

This hierarchy of model contributions within the stacking framework validates the rationale behind model 

selection, illustrating that the blending of diverse learner perspectives produces superior and more stable 

predictive outcomes. 

 

4. CONCLUSIONS 

 

This study successfully developed a precision-oriented churn prediction framework, demonstrating that a 

fine-tuned stacking ensemble model integrated with SHAP explainability offers superior performance. Our 



Precision-Oriented Churn Prediction with a Fine-Tuned Meta-Learner Stack Model and SHAP: A Case Study on IBM Telco 

Antoni, T.G., et al. 

 

150 

primary contribution is proving that prioritizing the precision metric effectively minimizes costly false 

positives, directly addressing a key business challenge in customer retention. The framework excels by not 

only achieving high predictive accuracy but also delivering transparent, actionable insights into the primary 

drivers of churn, such as contract type and tenure. This provides a robust and interpretable blueprint for data- 

driven retention strategies that are both effective and cost-efficient. 

Nevertheless, the framework's validation on the IBM Telco dataset introduces limitations in 

generalizability, and future work should prioritize testing on larger, real-world datasets from diverse industries. 

Key methodological enhancements should include exploring alternative ensemble architectures and, most 

importantly, incorporating cost-based evaluation metrics, such as return on intervention (ROI), to more closely 

align predictive performance with financial outcomes. Finally, complementing SHAP with other 

interpretability tools like LIME could offer a more holistic understanding of the model's behavior, 

strengthening stakeholder trust and its practical application in business decision-making. 
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